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Summary

Cayley submanifolds are naturally arising volume minimising submanifolds of Spin(7)-

manifolds. In the special case that the ambient manifold is a four-dimensional Calabi–

Yau manifold, a Cayley submanifold might be a complex surface, a special Lagrangian

submanifold or neither. In this thesis, we study the deformation theory of Cayley

submanifolds from two different perspectives.

Firstly, we seek special Lagrangian submanifolds by deforming a Lagrangian sub-

manifold in the direction given by its mean curvature vector. It is expected that a

Lagrangian submanifold evolved under Lagrangian mean curvature flow will develop

singular points in finite time. We will prove that if a compact Lagrangian submani-

fold of Cm develops finitely many singular points under Lagrangian mean curvature

flow, each asymptotic to a non-area-minimising pair of transversely intersecting La-

grangian planes, then the flow can be continued (in a weak sense) smoothly beyond

the formation of these singularities.

Secondly, motivated by the question of whether a complex surface can be deformed

into a Cayley submanifold that is not complex, we study deformations of compact

and conically singular Cayley submanifolds and complex surfaces. We will show that

the expected dimension of the moduli space of Cayley deformations of a compact or

conically singular Cayley submanifold is given by the index of a linear elliptic partial

differential operator. In particular, we will prove directly that complex and Cayley

deformations of a compact or conically singular complex surface are the same.
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Chapter 1

Preliminaries

The theory of calibrated geometry was proposed by Harvey and Lawson [15] in 1982.

It can be deduced from Wirtinger’s inequality that complex submanifolds of a Kähler

manifold are homologically volume minimising. Given a manifold with a calibration,

this manifold can have calibrated submanifolds which by definition satisfy a Wirtinger-

type inequality, and as a result are volume minimising in their homology class. Cali-

brated submanifolds exist naturally in manifolds with special holonomy, which are of

special interest to physicists working in certain branches of string theory.

We will be interested in three particular related types of calibrated submanifolds in

this thesis: Cayley submanifolds, which are four-dimensional submanifolds of mani-

folds with holonomy contained in Spin(7), two-dimensional complex surfaces inside

manifolds with holonomy contained in SU(4), which in this thesis are four-dimensional

Calabi–Yau manifolds and minimal Lagrangian submanifolds of Calabi–Yau manifolds

known as special Lagrangian submanifolds. Since SU(4) ⊆ Spin(7), Cayley submani-

folds can exist in four-dimensional Calabi–Yau manifolds. In fact, a two-dimensional

complex surface and a real four-dimensional special Lagrangian submanifold are Cay-

ley submanifolds, however a Cayley submanifold may be neither complex nor special

Lagrangian in general.
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2 CHAPTER 1. PRELIMINARIES

In this thesis, we will consider two different methods for finding examples of cali-

brated submanifolds. Firstly, in Chapter 2, we talk about finding special Lagrangian

submanifolds of a Calabi–Yau manifold by flowing a Lagrangian submanifold of the

Calabi–Yau under mean curvature flow. Despite Lagrangian mean curvature flow

having several nice properties, it is known that finite time singularities of the flow are

unavoidable. We will present a joint work of the author with Tom Begley which says

that a smooth solution to Lagrangian mean curvature flow exists for short time when

the initial condition is a Lagrangian submanifold with a certain type of singularity.

The second method that we will consider for finding examples of calibrated subman-

ifolds is by studying their deformation theory. Since a lot of work has already been

done on the deformation theory of special Lagrangian submanifolds, we will focus on

the deformation theory of Cayley submanifolds and complex surfaces in this thesis.

Given a calibrated submanifold Y of a manifold X, we can deform Y as a submanifold

of X. An interesting question to ask is whether we can characterise the deformations

of Y that are themselves calibrated submanifolds of X. The first study of the deforma-

tion theory of calibrated submanifolds can be attributed to Kodaira [31], who, some

twenty years before the conception of calibrated geometry, studied complex defor-

mations of compact complex submanifolds of complex manifolds using methods from

algebraic geometry. Analogues of Kodaira’s result for certain other examples of com-

pact calibrated submanifolds were proved by McLean [43], this time using methods

from differential geometry. Roughly, these results say that if an obstruction space van-

ishes, then the moduli space of calibrated deformations of Y in X is locally isomorphic

to the kernel of a linear partial differential operator.

A question that we will be aiming to answer in this thesis is the following.

Question 1. Given a two-dimensional complex submanifold N of a four-dimensional

Calabi–Yau manifold M , are the complex and Cayley deformations of N in M the

same?

When N is compact, one may deduce somewhat indirectly from the work of Harvey
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and Lawson that the answer to Question 1 is yes. In Chapter 3 of this thesis, we

will give an argument in the style of McLean on the complex and Cayley deformation

theory of a compact complex surface in a Calabi–Yau four-fold, which will enable us to

see directly that the answer to Question 1 is yes. In fact, we will see that the expected

dimension of the moduli space of Cayley deformations of N in M can be identified

with the index of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)), (1.0.1)

whereas the dimension of the moduli space of complex deformations of N in M is

isomorphic to the kernels of

∂̄ : C∞(ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)), (1.0.2)

∂̄∗ : C∞(Λ0,2N ⊗ ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)), (1.0.3)

which are in fact isomorphic to one another. Therefore, Cayley and complex deforma-

tions of the compact complex surface N are the same because the images of (1.0.2)

and (1.0.3) are orthogonal on a compact manifold.

Having answered Question 1 when N is compact, we would like to compare Cayley

and complex deformations of a noncompact complex surface N̂ in a Calabi–Yau man-

ifold M . This adds an extra layer of difficulty to the deformation problem, which

is almost entirely due to the failure of elliptic operators to be Fredholm on even the

simplest of noncompact manifolds. In Chapter 4 we will review the results of Lock-

hart and McOwen [35] on Fredholm theory for elliptic operators on manifolds with a

cylindrical end. These results can be applied to elliptic operators on manifolds with

conical singularities N , whose nonsingular part N̂ is a noncompact manifold. This

involves introducing weighted norms on spaces of sections, which, roughly speaking,

force sections and their derivatives to decay at a rate proportional to a power µ of

their distance from the singular point. As an example, we will see that if N̂ is a

two-dimensional complex submanifold of a Calabi–Yau four-fold M then for µ ∈ R\D,
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where D is a discrete set of ‘bad weights’, the elliptic operator

∂̄ + ∂̄∗ : Lpk+1,µ(ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ Lpk,µ−1(Λ0,1N̂ ⊗ ν1,0
M (N̂)), (1.0.4)

is Fredholm. Moreover, we can write down a formula for how the index of (1.0.4)

changes as µ varies.

In Chapter 5 we will consider Cayley deformations of a conically singular Cayley

submanifold Y inside a manifold X with holonomy Spin(7), and complex and Cayley

deformations of a conically singular complex surface N inside a Calabi–Yau four-fold

M . Since we are restricted by the Fredholm theory we have available to us for elliptic

operators on Y and N , we will consider deformations of Y and N that are themselves

conically singular. This time, the expected dimension of the moduli space of conically

singular Cayley deformations of N in M is equal to the index of (1.0.4) (for a certain

value of µ) whereas the moduli space of conically singular complex deformations of N

in M is isomorphic to the kernels of

∂̄ : C∞µ (ν1,0
M (N))→ C∞µ−1(Λ0,1N ⊗ ν1,0

M (N)), (1.0.5)

∂̄∗ : C∞µ (Λ0,2N ⊗ ν1,0
M (N))→ C∞µ−1(Λ0,2N ⊗ ν1,0

M (N)), (1.0.6)

where C∞µ (E) denotes smooth sections σ of a vector bundle E with |∇jσ(x)| pro-

portional to the (µ − j)th power of the distance between x and the singular point x̂

when x is close to x̂. It can again be shown that the images of (1.0.5) and (1.0.6) are

orthogonal for the values of µ that we consider, and so the answer to Question 1 is

again yes when N is conically singular.

In Chapter 6 we will perform some calculations. We first characterise the set D

for which the operator (1.0.4) is not Fredholm. The set D can be described by an

eigenvalue problem for certain operators on the complex link of a complex cone. We will

apply the Atiyah–Patodi–Singer index theorem [3] to the operator (1.0.1) on a conically

singular manifold, which will allow us to give an expression for the index of (1.0.4)

in terms of topological invariants of N and the set D. In particular, we will calculate

the η-invariant for the operator (1.0.1) acting on some two-dimensional complex cones
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in C4. We will apply the analysis of Chapter 5 to two-dimensional complex cones in

C4. We will consider conical Cayley and complex deformations of these cones, which

is equivalent to deforming the links of these cones as associative submanifolds of S7,

a problem studied by Kawai [30]. In particular, we will see explicitly that the answer

to Question 1 is ‘not necessarily’, by taking N to be a complex cone.

1.1 Introduction

This chapter is dedicated to preliminary information that we will require to study the

problems described above. It is intended to be an introduction to the fundamental

concepts in this thesis for the unfamiliar, or as a point of reference for definitions taken

to be standard in Chapters 2, 3, 4, 5 and 6 for the more experienced reader. In Section

1.1.1, we will define notation taken to be standard throughout the rest of this thesis.

Section 1.2.1 focusses on Calabi–Yau manifolds. In Section 1.2.2, we will discuss the

possible holonomy groups of a manifold, with an emphasis on the special holonomy

groups. In particular, we will define Spin(7)-manifolds and state some facts about

them which will be useful in the sequel. We will introduce calibrations in Section 1.2.3,

before going into more detail about special Lagrangian and Cayley submanifolds in

Sections 1.2.4 and 1.2.5 respectively.

1.1.1 Notation and conventions

Before we begin we will explain the notation in this thesis that is taken to be standard

throughout.

Euclidean space

We denote by Br(x) the open ball of radius r in Euclidean space. We denote by

A(r, R) := BR(0)\Br(0) the annulus centred at zero.
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The k-dimensional Hausdorff measure will be denoted by Hk.

Manifolds

Manifolds will not have a boundary unless clearly stated. Submanifolds will be embed-

ded. When talking about the dimension of a complex manifold, we mean the complex

dimension unless otherwise stated.

By a cone in Rn we mean a subspace C of Rn so that for any λ > 0 and any x ∈ C

we have that λx ∈ C. Define the link of C to be L := C ∩ Sn−1.

Complex projective space of dimension n will be denoted CP n.

We will denote the second fundamental form of a submanifold by A, and the mean

curvature vector by ~H.

Smooth functions M → R will be denoted by C∞(M), with Ck(M) denoting k-times

differentiable functions M → R with continuous kth derivative.

Vector bundles

Let X be a real manifold. We will denote by ΛpX the vector bundle whose fibre at

x ∈ X is ΛpT ∗xX, the exterior algebra of the cotangent space to X at x. The vector

bundle T qsX = TX⊗s⊗T ∗X⊗q denotes the bundle of (s, q)-tensors on X. The positive

and negative spinor bundles over X will be denoted by S+ and S− respectively.

If Y is a submanifold of X then νX(Y ) denotes the normal bundle of Y in X. The

conormal bundle of Y in X is denoted by ν∗X(Y ). The normal space to Y at y ∈ Y

will be denoted by νy(Y ) or νy,X(Y ) if there is possible ambiguity about the ambient

space.

Let (M,J) be a complex manifold. Write TM ⊗C = T 1,0M ⊕T 0,1M and T ∗M ⊗C =

T ∗1,0M ⊕ T ∗0,1M for the decomposition of the complexified (co)tangent space to X

into i and −i eigenspaces of the complex structure J respectively. Write Λp,qM =
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ΛpT ∗1,0M ⊗ ΛqT ∗0,1M . If dimCM = m write KM := Λm,0M for the canonical bundle

of M .

Let N be a complex submanifold of M . Then νM(N) ⊗ C = ν1,0
M (N) ⊕ ν0,1

M (N)

and ν∗M(N) ⊗ C = ν∗1,0M (N) ⊕ ν∗0,1(N) under the decomposition of the complexified

(co)normal bundle of N in M into the i and −i eigenspaces of J respectively. Call

ν1,0
M (N) the holomorphic normal bundle of N in M .

We will denote by OCPn(−1) the tautological line bundle over CP n and its dual bundle

by OCPn(1). If k > 0 then OCPn(k) := OCPn(1)⊗k and if k < 0 then OCPn(k) :=

OCPn(−1)⊗−k. The bundle OCPn(0) is the trivial line bundle over CP n.

Sections

Let F be a vector bundle over a manifold X. Denote by C∞(F ) the smooth sections

of F and by C∞0 (F ) smooth sections of F with compact support. If U ⊆ F is an open

set in F , define

C∞(U) := {σ ∈ C∞(F ) |σ(x) ∈ U for all x ∈ X}.

Denote by Ωp,q(F ) the bundle of F -valued (p, q)-forms. If F has an inner product and

a connection ∇, we can define a norm on sections of F by

‖σ‖Ck :=
k∑
j=0

sup
x∈X
|∇jσ|.

For 1 < p <∞ and k ∈ N denote by Lpk(F ) the Sobolev space with norm

‖σ‖p,k =

(
k∑
j=0

∫
X

|∇jσ|p volX

)1/p

.

Say that σ ∈ Lpk,loc(F ) if ψ σ ∈ Lpk(F ) for all smooth functions ψ on X with compact

support.
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Differential operators

Say that a bounded linear operator

A : X → Y,

between Banach spaces is Fredholm if it has finite-dimensional kernel and cokernel

(Coker A := Y/Im A) and closed image. The cokernel of a Fredholm operator A is

isomorphic to the kernel of its adjoint A∗ : Y ∗ → X∗. Define the index of A to be

ind A = dim Ker A− dim CokerA = dim Ker A− dim Ker A∗.

If X is a compact manifold and A is a linear elliptic differential operator

A : C∞(F1)→ C∞(F2),

for vector bundles F1, F2 over X, then we take

ind A := dim Ker A− dim Ker A∗, (1.1.1)

where

A∗ : C∞(F2)→ C∞(F1),

is the formal adjoint of A. If A acts on sections of complex vector bundles, we can

take the real or complex dimension in (1.1.1) and refer to the real or complex index

of A.

Cohomology groups

If V is a complex variety and S is a sheaf on V denote by Hj(X,S) the jth sheaf

cohomology group of S.

If M is a complex manifold and F is a holomorphic vector bundle over M denote by

Hp,q

∂̄
(M,F ) the cohomology of the complex

. . .
∂̄−→ C∞(Λp,q−1M ⊗ F )

∂̄−→ C∞(Λp,qM ⊗ F )
∂̄−→ C∞(Λp,q+1M ⊗ F )

∂̄−→ . . .
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Operations

Let X be a manifold. If α ∈ C∞(ΛpX) and v ∈ C∞(TX), write vyα := α(v, · , . . . , · ).

Suppose X has a metric g. We denote by ∗X : ΛpX → Λn−pX the Hodge star on X,

where n = dim X. Denote the musical isomorphisms on X by [ : TX → T ∗X and

] : T ∗X → TX.

1.2 Preliminaries

Here we will give some background results that will be useful in this thesis. References

are given for specific results, however there are some general references that the ma-

terial is based on. Joyce’s book [25] is an excellent reference for anyone interested in

studying manifolds with special holonomy and calibrated submanifolds and is highly

recommended for the reader who would like to fill in the gaps of what is written subse-

quently. Huybrechts’ book [17] on complex geometry is again highly recommended for

those less familiar with complex geometry, as is Griffiths and Harris’s classic textbook

[14] on algebraic geometry.

1.2.1 Calabi–Yau manifolds

Let (M,J, ω) be a compact Kähler manifold with complex structure J and Kähler

form ω. The Kähler form defines a cohomology class on M , [ω], called the Kähler

class. A natural question that arises when considering cohomology classes is whether

there is a ‘preferred’ representative of each class. For example, the Hodge theorem

[21, Thm 1.1.4] tells us that each de Rham cohomology class on a compact oriented

manifold has a unique harmonic representative.

The question of whether the Kähler class on a manifold (M,J, ω) has a preferred rep-

resentative was studied by Calabi [10]. He conjectured that if the underlying complex

manifold (M,J) satisfies a certain topological condition, then there exists ω′ ∈ [ω]
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that induces a Ricci-flat metric on M , and proved that if such an ω′ exists, then it is

unique. The proof of the so-called Calabi conjecture was completed by Yau [58] some

twenty years later, resulting in the following theorem, referred to by some authors as

Yau’s theorem.

Theorem 1.2.1 (Calabi–Yau). Let M be a compact Kähler manifold with complex

structure J and Kähler form ω′ and suppose that M satisfies c1(M) = 0, where c1(M)

is the first Chern class of M . Then there exists a unique Ricci-flat Kähler metric ω

satisfying [ω′] = [ω].

Motivated by Theorem 1.2.1, we make the following definition.

Definition 1.2.1. We say that a compact Kähler manifold M of complex dimension

m is a Calabi–Yau manifold if the canonical bundle of M , KM := Λm,0M , is holomor-

phically trivial, that is, if there exists an (m, 0)-form α that satisfies α(x) 6= 0 for all

x ∈M and ∂̄α = 0.

Remark. A Calabi–Yau manifold M in the sense of Definition 1.2.1 satisfies c1(M) =

0, and so we can apply the Calabi–Yau theorem 1.2.1 to M . However, a Kähler

manifold X satisfying c1(X) = 0 is not, in general, a Calabi–Yau manifold in the

sense of Definition 1.2.1.

Later, when we have a Calabi–Yau manifold M we will require a particular choice

of nonvanishing holomorphic section of KM . Let M be a Calabi–Yau manifold with

Ricci-flat metric ω. Notice that any nonvanishing section α of KM satisfies

ωm

m!
= ψα α ∧ ᾱ, (1.2.1)

for some ψα : M → (0,∞), where m = dimCM . The following result about Ricci-flat

Kähler manifolds will allow us to deduce that if α is holomorphic then ψα is constant.

Proposition 1.2.2 ([25, Prop.7.1.5]). Suppose X is a compact Kähler Ricci-flat man-

ifold, and let ξ be a smooth (p, 0)-form on X. Then ∇ξ = 0 iff dξ = 0 iff ∂̄ξ = 0,

where ∇ is the Levi-Civita connection of the metric on X.

Suppose that α in Equation (1.2.1) is holomorphic. Proposition 1.2.2 ensures that α

is parallel. Differentiating both sides of Equation (1.2.1) with respect to ∇ allows us
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to deduce that

∇ψα = 0,

where we note that dω = 0 implies that ∇ω = 0 on a Hermitian manifold [25, Prop

5.4.2]. The following definition allows us to choose a particular holomorphic section

of KM by taking ψα in Equation (1.2.1) to be a particular choice of constant. This

choice of constant will be important in Section 1.2.3.

Definition 1.2.2. Let Mm be a Calabi–Yau manifold with Ricci-flat Kähler metric

ω. We say that a holomorphic nowhere vanishing section Ω of KM satisfying

ωm

m!
=

(
i

2

)m
(−1)m(m−1)/2Ω ∧ Ω. (1.2.2)

is a holomorphic volume form of M . A holomorphic volume form on a Calabi–Yau

manifold is unique up to multiplication by a unit complex number.

We will end this section with some examples of Calabi–Yau manifolds.

Example. A model example of a Calabi–Yau manifold is Cm with the Euclidean

metric and standard complex structure. This is clearly not a compact Kähler manifold,

however our reason for asking for compactness in Definition 1.2.1 is so that we may

apply the Calabi–Yau theorem 1.2.1 to find a Ricci-flat Kähler metric on the manifold.

The Euclidean metric is flat, and so already Ricci-flat, so we do not require the Calabi–

Yau theorem here.

Define the Euclidean Kähler form ω0 ∈ C∞(Λ1,1Cm) and the Euclidean holomorphic

volume form Ω0 ∈ C∞(Λm,0Cm) to be

ω0 =
i

2
(dz1 ∧ dz̄1 + · · ·+ dzm ∧ dz̄m) , (1.2.3)

Ω0 = dz1 ∧ · · · ∧ dzm.

It is easy to check that Ω0 is a holomorphic volume form of Cm in the sense of Definition

1.2.2.

Given a point x ∈ M , a Calabi–Yau manifold of dimension m with Ricci-flat Kähler

form ω and holomorphic volume form Ω we can choose a neighbourhood V of x and
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a biholomorphism χ : U ⊆ Cm → V ⊆M such that χ(0) = x and

χ∗ω = ω0 +O(|z|2), (1.2.4)

where ω0 is as in (1.2.3) by [14, pg 107]. Notice that with this choice of coordinates,

using Equation (1.2.2)

χ∗(Ω ∧ Ω) = ±2mi
ωm0
m!

+O(|z|2) = Ω0 ∧ Ω0 +O(|z|2),

where Ω0 was defined in (1.2.3) and so we must also have that in these coordinates,

χ∗Ω = eiθΩ0 +O(|z|2), (1.2.5)

where θ is constant. We can always choose a holomorphic volume form on M so that

θ = 0.

Example. The compact manifold CPm with the Fubini–Study metric [17, Ex 3.1.9

i)] is a Kähler manifold. It is well known that a smooth hypersurface M of degree

m+1 in CPm has trivial canonical bundle [17, Cor 2.4.9]. Since M is also Kähler with

respect to the metric induced by the Fubini–Study metric, Definition 1.2.1 tells us

that M is a Calabi–Yau manifold. Note that although the Calabi–Yau theorem 1.2.1

says that a Ricci-flat Kähler metric exists on M , it is very hard to find an explicit

expression for this metric (even though we know what cohomology class it lies in).

Finding an explicit expression for the Ricci-flat metric on a Calabi–Yau manifold is a

difficult problem in general.

1.2.2 Spin(7)-manifolds

So-called Spin(7)-manifolds are of interest because of their unusual, or exceptional

holonomy. We will therefore introduce the Riemannian holonomy group of a Rieman-

nian manifold. The overview given here is based on the material in [25, §2.2].

Let (X, g) be a Riemannian manifold of dimension n and denote by ∇ the Levi-Civita

connection of g. Consider a loop γ in X based at x ∈ X, that is, a piecewise smooth
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map [0, 1] → X with γ(0) = γ(1) = x. Given v0 ∈ TxX we can find a unique section

v of TX defined along γ satisfying

∇γ̇(t)v(γ(t)) = 0,

and v(0) = v0. This defines a map

Pγ : TxX → TxX,

with Pγ(v0) = v(γ(1)). Consider the set

Hx := {Pγ : TxX → TxX | γ is a loop in X based at x}. (1.2.6)

It can be shown that (Hx, ◦) is a subgroup of Gl(n,R) and moreover that (Hx, ◦)

and (Hx′ , ◦) are the same subgroup of Gl(n,R) up to conjugation, and so we can

write H = Hx. We will call the group (H, ◦) the Riemannian holonomy group of

(X, g) denoted Hol(g). It can be shown that on a simply connected manifold, the

Riemannian holonomy group is a connected Lie subgroup of Gl(n,R).

The Riemannian holonomy group of a metric allows us to deduce properties of the

manifold. For example, if the Riemannian holonomy group of (X, g) is contained in

U(n/2), then (X, g) is Kähler. The possible Riemannian holonomy groups of a simply

connected manifold (X, g) of dimension n which is nonsymmetric and irreducible were

characterised by Berger [6, Thm 3], who showed that Hol(g) must be equal to one of

the following groups:

(i) SO(n),

(ii) U(m) in SO(2m) (n = 2m),

(iii) SU(m) in SO(2m) (n = 2m),

(iv) Sp(m) in SO(4m) (n = 4m),

(v) Sp(m)Sp(1) in SO(4m) (n = 4m),

(vi) G2 in SO(7) (n = 7),
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(vii) Spin(7) in SO(8) (n = 8).

Around the time that this result was proved, examples of metrics with holonomy

groups given by (i)-(v) were already well-known – for example as we mentioned above

a Kähler manifold (X, g) has Hol(g) ⊆ U(m), whereas a Calabi–Yau manifold (X, g)

has Hol(g) ⊆ SU(m) (yielding yet another possible way of defining a Calabi–Yau

manifold – this is actually equivalent [25, Prop 7.1.4] to Definition 1.2.1). However, the

inclusion of the groups G2 and Spin(7) on this list was initially considered anomalous

(Berger’s original list included the group Spin(9) in SO(16). It was later shown that

metrics with holonomy Spin(9) are symmetric), and metrics with holonomy equal to

G2 and Spin(7) were not expected to exist. It was discovered, however, some thirty

years later by Bryant [9] that such metrics did indeed exist, with explicit examples

constructed soon after by Bryant and Salamon [8]. Finally, examples of metrics with

holonomy G2 and Spin(7) on compact manifolds were constructed by Joyce, who gives

a succinct overview of how this is done in his book [25, Ch 11].

Manifolds with Riemannian holonomy equal to G2 or Spin(7) are known as manifolds

with exceptional holonomy. Their discovery has attracted the attention of physicists,

who are interested in manifolds with special holonomy (that is, holonomy G2, Spin(7)

or SU(n)) as models in certain branches of string theory such as M -theory. In particu-

lar, physicists would like mathematicians to come up with more examples of manifolds

with holonomy G2 and Spin(7) with certain additional properties, for example isolated

conical singularities, to support their theories.

We will now give the definition of a Spin(7)-manifold that we will use throughout this

exposition. One can perhaps infer from the overview above that a Spin(7)-manifold

might be a manifold with a metric whose holonomy group is equal to Spin(7), however,

this is not the only way to define a Spin(7)-manifold. The following definition has been

chosen because of the context in which we will need Spin(7)-manifolds, not because

we are interested in these manifolds themselves, but in naturally occurring volume

minimising submanifolds of these manifolds (which we will discuss in Sections 1.2.3
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and 1.2.5 later). The following definition is based on the one given in Joyce’s book

[25, Defn 11.4.2].

Definition 1.2.3. Let (x1, . . . , x8) be coordinates on R8 with the Euclidean metric

g0 = dx2
1 + · · ·+ dx2

8. Define a four-form on R8 by

Φ0 :=dx1234 − dx1256 − dx1278 − dx1357 + dx1368 − dx1458 − dx1467

−dx2358 − dx2367 + dx2457 − dx2468 − dx3456 − dx3478 + dx5678, (1.2.7)

where dxijkl := dxi ∧ dxj ∧ dxk ∧ dxl.

Let M be an eight-dimensional oriented manifold. Define for each p ∈ M the subset

ApM ⊆ Λ4T ∗pM to be those four-forms Φ for which there exists an oriented isomor-

phism TpM → R8 identifying Φ and Φ0 given in (1.2.7), and define the vector bundle

AM to be the vector bundle with fibre ApM .

A four-form Φ on M satisfying Φ|p ∈ ApM for all p ∈M defines a metric g on M , using

the fact that each tangent space to M is identified with R8 with the Euclidean metric.

We call (Φ, g) a Spin(7)-structure on M . Let ∇ denote the Levi-Civita connection of

g. Say that (Φ, g) is a torsion-free Spin(7)-structure on M if ∇Φ = 0.

We say that (M,Φ, g) is a Spin(7)-manifold if M is an eight-dimensional oriented

manifold and (Φ, g) is a torsion-free Spin(7)-structure on M .

Remark. We may actually use Φ0 to define the group Spin(7) by taking it to be the

subgroup of Gl(8,R) that preserves Φ0 in the sense that A ∈ Spin(7) if, and only if,

Φ0(Ax,Ay,Az,Aw) = Φ0(x, y, z, w),

for all x, y, z, w ∈ R8.

The link between Definition 1.2.3 and manifolds with holonomy contained in Spin(7)

is made rigorous in the following proposition. It is taken from Joyce’s book [25, Prop

11.4.3].

Proposition 1.2.3. Let M be an oriented eight-dimensional manifold and (Φ, g) a

Spin(7)-structure on M . Then the following are equivalent:
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(i) (Φ, g) is torsion-free,

(ii) Hol(g) ⊆ Spin(7),

(iii) ∇Φ = 0 on M , where ∇ is the Levi-Civita connection of g, and

(iv) dΦ = 0 on M .

Metrics with holonomy contained in Spin(7) are Ricci-flat [25, Prop 11.4.5], so we can

deduce that a Spin(7)-manifold is Ricci-flat.

Since the holonomy group of a Spin(7)-manifold is contained in Spin(7), and not

necessarily equal to Spin(7), we are allowed to have the following special example of

a Spin(7)-manifold.

Example. We will consider the special type of Spin(7)-manifold frequently in this

exposition which is a four-dimensional Calabi–Yau manifold (note that SU(4) ⊆

Spin(7)). Let M be a four-dimensional Calabi–Yau manifold as in Definition 1.2.1

with Ricci-flat Kähler metric ω. Choose a holomorphic volume form Ω so that in local

coordinates on M

ω = ω0 +O(|z|2), Ω = Ω0 +O(|z|2),

where ω0 and Ω0 were defined in (1.2.3), as we described in (1.2.4)-(1.2.5).

Consider the naturally occurring four-form on M given by

Φ :=
1

2
ω ∧ ω + Re Ω.

Then given any p ∈M we can choose coordinates so that

Φ|p =
1

2
ω0 ∧ ω0 + Re Ω0. (1.2.8)

Identifying C4 with R8 using (z1, z2, z3, z4) = (x1 + ix5, x2 + ix6, x3 + ix7, x4 + ix8) and

comparing Equations (1.2.7) and (1.2.8), it follows that Φ defines a Spin(7)-structure

on M . Clearly dΦ = 0 and therefore by Proposition 1.2.3, (M,ω,Ω) is a Spin(7)-

manifold.
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Properties of Spin(7)-manifolds

A Spin(7)-structure on a manifold M induces a natural three-fold cross product on

TM . The following lemma follows from [29, Lem 4.4.2].

Lemma 1.2.4. Let M8 be an oriented manifold with Spin(7)-structure (Φ, g). Then

there is a natural alternating, trilinear map

κ : TM × TM × TM → TM,

called the triple cross product on M defined by

Φ(x, y, z, w) = g(x, κ(y, z, w)),

satisfying

|κ(y, z, w)| = |y ∧ z ∧ w|.

Remark. In general, an m-fold cross product on an n-dimensional Riemannian man-

ifold (X, g) is an alternating, m-linear map from m copies of TX to TX. It must

satisfy

|v1 × · · · × vm| = |v1 ∧ · · · ∧ vm|,

g(v1 × . . . vm, vi) = 0, i = 1, . . . ,m,

for all vector fields v1, . . . , vm on X. Lemma 1.2.4 ensures that the map κ is a cross

product in this sense.

We can decompose bundles of forms on Spin(7)-manifolds into irreducible represen-

tations of Spin(7). The vector bundle Λ2
7 defined below will appear frequently in this

exposition, making its first appearance in Section 1.2.5. The following proposition can

be found in Joyce’s book [25, Prop 11.4.4].

Proposition 1.2.5. Let M be a Spin(7)-manifold. Then the bundles of two-forms

and self-dual four-forms on M admit the following decompositions into irreducible

representations of Spin(7):

Λ2M ∼= Λ2
7 ⊕ Λ2

21,

Λ4
+M
∼= Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27,
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where Λ4
+M denotes the self-dual four-forms on M and Λk

l denotes the irreducible

representation of Spin(7) on k-forms of dimension l.

Further, there is a canonical isomorphism Λ2
7
∼= Λ4

7.

Remark. Given an orthonormal frame for M {e1, . . . , e8} with coframe {e1, . . . , e8},

we can explicitly define Λ2
7 and Λ4

7. The following expressions are taken from [51, Thm

9.5] and [29, Eqn 4.17] respectively. We have that

Λ2
7 = {ei ∧ ej − (eiy (ejyΦ)) | 1 ≤ i < j ≤ 8}, (1.2.9)

Λ4
7 = {α j

i e
i ∧ (ejyΦ)− αijej ∧ (eiyΦ) |αijei ∧ ej ∈ Λ2

7}, (1.2.10)

where we use the summation convention in (1.2.10).

1.2.3 Calibrated submanifolds

It was first noticed by Federer [12] that complex submanifolds of Kähler manifolds

are volume minimising in their homology class. We can see this from Wirtinger’s

inequality for Kähler manifolds [17, Ex 1.2.9]: Let (X,ω) be a Kähler manifold of

complex dimension n. Then for any oriented real 2p-dimensional submanifold Y of X,

ωp

p!

∣∣∣∣
Y

≤ volY , (1.2.11)

with equality if, and only if, Y is a complex submanifold of X. So we see that if

Y is a p-dimensional compact complex submanifold of (X,ω) and Y ′ is any real 2p-

dimensional submanifold of X homologous to Y , then

vol(Y ) =

∫
Y

volY =

∫
Y

ωp

p!
=

∫
Y ′

ωp

p!
≤
∫
Y ′

volY ′ = vol(Y ′), (1.2.12)

by Wirtinger’s inequality (1.2.11). Further, equality holds in (1.2.12) if, and only if,

Y ′ is a complex submanifold of X too.

Harvey and Lawson [15] exploited the property (1.2.11) that makes a complex sub-

manifold homologically mass minimising in making the following definition.
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Definition 1.2.4. Let (X, g) be a Riemannian manifold and let α be a p-form on X.

If dα = 0 and, for any x ∈ X and any oriented p-dimensional subspace V ⊆ TxX,

α|V ≤ volV ,

then we say that α is a calibration on X.

We say that an oriented p-dimensional submanifold Y of X is a calibrated submanifold

of X if α|Y = volY .

Example. Let (X,ω) be a Kähler manifold of complex dimension n. Then for any

integer 1 ≤ p ≤ n it follows from Wirtinger’s inequality (1.2.11) that

ωp

p!
,

is a calibration on X, and the calibrated submanifolds of X are the complex p-

submanifolds of X.

Replacing the complex submanifold calibration in Equation (1.2.12) by an arbitrary

calibration leads us straight to the following result.

Proposition 1.2.6 ([15, II.4 Thm 4.2]). Let X be a Riemannian manifold with cal-

ibration α and let Y be a compact α-calibrated submanifold. Let Y ′ be any other

compact submanifold of X homologous to Y . Then∫
Y

volY ≤
∫
Y ′

volY ′ ,

with equality if, and only if, Y ′ is also α-calibrated.

1.2.4 Special Lagrangian submanifolds

We will now define the first type of calibrated submanifold that will be studied in this

thesis.

Definition 1.2.5. Let M be a Calabi–Yau manifold with Ricci-flat Kähler metric ω

and holomorphic volume form Ω. Then

e−iθRe Ω,
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for any constant θ ∈ [0, 2π) is a calibration on M . The calibrated submanifolds of M

in this case are called special Lagrangian submanifolds of M with phase θ.

Remark. Our choice of constant relating ω and Ω in Definition 1.2.2 was made to

ensure that Re Ω is a calibration.

Harvey and Lawson found the following equivalent condition for a real m-dimensional

submanifold of a Calabi–Yau manifold (of dimension m) to be special Lagrangian.

Proposition 1.2.7 ([15, Cor III.1.11]). A real m-dimensional submanifold L of an

m-dimensional Calabi–Yau manifold (M,ω,Ω) is a special Lagrangian submanifold of

M with phase θ if, and only if,

ω|L ≡ 0,

and

Im(e−iθΩ)|L = (cos θ Im Ω− sin θRe Ω)|L ≡ 0.

In particular, this confirms that a special Lagrangian submanifold is indeed a La-

grangian submanifold.

1.2.5 Cayley submanifolds

We will now introduce the protagonist of this thesis. Recall the material of Section

1.2.2, where we talked about manifolds with special holonomy and, in particular,

Spin(7)-manifolds. Taking Definition 1.2.3 to be our definition of a Spin(7)-manifold

(and supposing (correctly) that there exists a similar definition of aG2-manifold) shows

us that manifolds with exceptional holonomy are examples of manifolds equipped with

a naturally arising calibration.

Definition 1.2.6. Let (X,Φ, g) be a Spin(7)-manifold. Then Φ is a calibration on

X, called the Cayley calibration, and submanifolds of X calibrated by Φ are called

Cayley submanifolds of X.

Remark. We saw in Section 1.2.2 that a four-dimensional Calabi–Yau manifold M is
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a Spin(7)-manifold, and in this case the Cayley calibration is given by

Φ = Re Ω +
1

2
ω ∧ ω,

where ω is the Ricci-flat Kähler metric and Ω is the holomorphic volume form on M .

From this expression it can be seen that complex surfaces (calibrated by 1
2
ω ∧ ω) and

special Lagrangian submanifolds (with phase zero, calibrated by Re Ω) of M are both

examples of Cayley submanifolds. We are particularly interested in the relationship

between two-dimensional complex submanifolds and Cayley submanifolds that are not

complex submanifolds inside a four-dimensional Calabi–Yau manifold in Chapters 3–6

of this thesis.

It is easy to see then that Cayley submanifolds exist by taking any two-dimensional

complex submanifold of a degree six hypersurface in CP 5. It is interesting to note that

Cayley submanifolds exist that are not complex or special Lagrangian submanifolds

of a Calabi–Yau four-fold. These can be linear subspaces of R8, but more interesting

Cayley submanifolds of R8 were constructed by Lotay [36]. Joyce [21] has constructed

Cayley submanifolds of compact Spin(7)-manifolds.

Properties of Cayley submanifolds

Let (M, g,Φ) be a Spin(7)-manifold. We can identify the tangent space to M at any

point with O, the octonions or Cayley numbers. This is because the automorphism

group of O is Spin(7). In Calibrated geometries [15], the theory of Cayley submanifolds

unfolds mainly in terms of linear subspaces of O. The following characterisation of

Cayley subspaces of O is particularly interesting.

Proposition 1.2.8 ([15, IV.1.C Cor 1.29]). Let ζ be an oriented four-dimensional

linear subspace of O. Then ζ is a Cayley subspace of O if, and only if, for any basis

{u, v, w, x} of ζ

Im (u× v × w × x) ≡ 0,

where u× v × w × x is a four-fold cross product naturally arising on O.
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We can interpret the four-fold octonian cross product as a Λ2
7-valued four-form on

a Spin(7)-manifold. The next result, which can be considered as a generalisation of

Proposition 1.2.8, allows us to characterise Cayley submanifolds of a Spin(7)-manifold

(X,Φ, g) in terms of a four-form that vanishes exactly when restricted to a Cayley

submanifold of X.

Proposition 1.2.9 ([51, Lem 10.3]). Let X be a real eight-dimensional manifold with

Spin(7)-structure (Φ, g). Let κ denote the triple cross product on X induced by Φ given

in Lemma 1.2.4. Let Y be an oriented real four-dimensional submanifold of X. Then

Y is a Cayley submanifold of X if, and only if, τ |Y ≡ 0, where τ ∈ C∞(Λ4X ⊗ Λ2
7) is

defined by, for any vector fields x, u, v, w on X

τ(x, u, v, w) =
1

4

(
π7(κ(u, v, w)[ ∧ x[)− π7(κ(v, w, x)[ ∧ u[)

+π7(κ(w, x, u)[ ∧ v[)− π7(κ(x, u, v)[ ∧ w[)
)
,

where π7 : Λ2X → Λ2
7 is the projection map given by π7(x[∧y[) = 1

2
(x[∧y[+Φ(x, y, ·, ·))

and [ denotes the musical isomorphism TX → T ∗X.

Moreover, if x, u, v, w are orthogonal then

τ(x, u, v, w) = π7(κ(u, v, w)[ ∧ x[).

If {e1, . . . , e8} is an orthonormal coframe for T ∗X so that

Φ =e1234 − e1256 − e1278 − e1357 + e1368 − e1458 − e1467

−e2358 − e2367 + e2457 − e2468 − e3456 − e3478 + e5678,

then τ takes the form

τ =(e1358 + e1367 − e1457 + e1468

−e2357 + e2368 − e2458 − e2467)⊗ 1

2
(e12 + e34 − e56 − e78)

+(−e1258 − e1267 + e1456 + e1478

+e2356 + e2378 − e3458 − e3467)⊗ 1

2
(e13 − e24 − e57 + e68)
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+(e1257 − e1268 − e1356 − e1378

+e2456 + e2478 + e3457 − e3468)⊗ 1

2
(e14 + e23 − e58 − e67)

+(e1238 − e1247 + e1346 − e1678

−e2345 + e2578 − e3568 + e4567)⊗ 1

2
(e15 + e26 + e37 + e48)

+(e1237 + e1248 − e1345 + e1578

−e2346 + e2678 − e3567 − e4568)⊗ 1

2
(e16 − e25 − e38 + e47)

+(−e1236 + e1245 + e1348 − e1568

−e2347 + e2567 + e3678 − e4578)⊗ 1

2
(e17 + e28 − e35 − e46)

+(−e1235 − e1246 − e1347 + e1567

−e2348 + e2568 + e3578 + e4678)⊗ 1

2
(e18 − e27 + e36 − e45). (1.2.13)

This expression looks fairly nasty, however we can equivalently write this as

τ =
1

4

∑
i<j∈{1,...,8}

(ej ∧ (eiyΦ)− ei ∧ (eiyΦ))⊗ π7(ei ∧ ej), (1.2.14)

which is slightly less intimidating.
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Chapter 2

Lagrangian mean curvature flow

Much of what follows in this thesis is on deformation theory of Cayley submanifolds

with a particular emphasis on complex surfaces inside Calabi–Yau four-folds. As we

have seen, the other subclass of Cayley submanifolds in Calabi–Yau four-folds is special

Lagrangian submanifolds. The deformation theory of special Lagrangian submanifolds

has been studied extensively, firstly by McLean [43, §3] who studied deformations of

compact special Lagrangians, and later by Joyce [22], who in a five paper series studied

the deformation theory of compact special Lagrangians with isolated conical singular-

ities, asymptotically conical special Lagrangians, as well as related problems such as

desingularisation. The Cayley deformations of special Lagrangians were studied by

Ohst [48, §5.4]. In this chapter, we will discuss a different method for finding special

Lagrangian submanifolds and present a joint work of the author with Tom Begley on

Lagrangian mean curvature flow [5].

2.1 Introduction

An important open question in the theory of special Lagrangian submanifolds is

whether given a homology or Hamiltonian isotopy class in a suitable ambient mani-
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fold (Calabi–Yau, Kähler–Einstein or symplectic) there exists a special (or minimal)

Lagrangian representative of that class. This problem, whilst reasonably simple to

state, is very subtle and fraught with difficulty. For example, Schoen–Wolfson [52]

studied a constrained minimisation problem for the area functional, minimising over

Lagrangian submanifolds of a four-dimensional symplectic manifold in a given homol-

ogy class. They found that such a minimiser exists, but is not guaranteed to be a

minimal surface (that is, a special Lagrangian) or even smooth. Later, Wolfson [57]

went on to explicitly construct a Lagrangian sphere inside a K3-surface whose homol-

ogy class has a Lagrangian representative with least volume, but that isn’t a special

Lagrangian, and moreover the minimiser among all submanifolds in this homology

class is not Lagrangian.

A different approach to studying this problem is to evolve a Lagrangian submanifold

under mean curvature flow in the hope of reaching a special Lagrangian. In this

chapter, we will give a brief review of mean curvature flow in Section 2.2 before

describing some of the special properties of Lagrangian mean curvature flow in Section

2.2.1. In Section 2.2.2, we will talk about singularities of mean curvature flow and

describe two special types of solution to Lagrangian mean curvature flow. In Section

2.3, we will motivate and present the following theorem (Theorem 2.3.1).

Theorem. Suppose that L ⊂ Cm is a compact Lagrangian submanifold of Cm, satis-

fying some additional properties, with finitely many singularities each asymptotic to a

pair of transversally intersecting planes which is not area minimising. Then we can

find a solution to mean curvature flow starting from L which exists for time T > 0.

The first step towards proving this theorem is to construct a family of compact smooth

Lagrangian submanifolds Ls by removing a neighbourhood of the singular point of L

and carefully gluing in something smooth. This construction is presented in detail in

Section 2.3.1. A solution to Lagrangian mean curvature flow with initial condition Ls

exists for short time Ts, and so as long as infs>0 Ts > 0, we can apply a compactness

result to find a limiting flow which exists for short time, which is what we require.
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We will give an overview of this part of the proof in Section 2.3.2, followed by some

concluding remarks in Section 2.3.3.

2.2 Mean curvature flow

Given an m-dimensional manifold M and an embedding F0 : M → Rm+k, we say that

M evolves under mean curvature flow if there exist a T > 0 and a family of immersions

F : M × [0, T )→ Rm+k satisfying

∂F

∂t
(p, t) = ~H(p, t), (2.2.1)

F ( · , 0) = F0( · ), (2.2.2)

where ~H(p, t) is the mean curvature vector of the immersed submanifoldMt := F (M, t)

at the point x(p, t) = F (p, t). In what follows, we will frequently denote F (p, t) by

x, suppressing the arguments where there is no chance of ambiguity. It is hoped that

if the flow exists for all time (i.e., T = ∞) then Mt will converge (as t → ∞) to a

stationary submanifold of Rm+k (i.e., with ~H = 0), and that this submanifold is a

minimal submanifold. It is well known that if M is a closed manifold then the initial

value problem (2.2.1)–(2.2.2) has a unique solution up to time T ∈ (0,∞]. This is

known as short-time existence for mean curvature flow.

There are several important tools for studying properties of mean curvature flow,

which we will introduce here. We will abuse notation slightly by omitting the family

of immersions F ( · , t) and say that a family (Mt)0≤t<T is a mean curvature flow if

there exists a family of immersions F with F (M0, t) = Mt satisfying (2.2.1)–(2.2.2).

Definition 2.2.1. For any (x0, t0) ∈ Rm+k×R define the backwards heat kernel ρ(x0,t0)

to be

ρ(x0,t0)(x, t) :=
1

(4π(t0 − t))m/2
exp

(
−|x− x0|2

4(t0 − t)

)
, (2.2.3)

for x ∈ Rm+k and t < t0.
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A simple, yet important result in mean curvature flow is the monotonicity formula

proved by Huisken [16, Thm 3.1].

Theorem 2.2.1 (Monotonicity formula). Let (Mt)0≤t<t0 be a mean curvature flow.

Then

d

dt

∫
Mt

ρ(x0,t0)(x, t) dHm(x) = −
∫
Mt

∣∣∣∣ ~H − (x0 − x)⊥

2(t0 − t)

∣∣∣∣2 ρ(x0,t0)(x, t) dHm(x). (2.2.4)

Definition 2.2.2. Let (Mt)0≤t<T be a mean curvature flow. Then for 0 < t0 ≤ T ,

0 < r ≤
√
t0 and any x0 ∈ Rm+k we define the Gaussian density ratio centred at

(x0, t0) and at scale r by

Θ(x0, t0, r) :=

∫
Mt0−r2

ρ(x0,t0)(x, t0 − r2) dHm(x),

=

∫
Mt0−r2

1

(4πr2)m/2
exp

(
−|x− x0|2

4r2

)
dHm(x).

Define the Gaussian density to be

Θ(x0, t0) := lim
r↘0

Θ(x0, t0, r).

Theorem 2.2.1 tells us that this limit exists.

It is known that Θ(x0, t0) = 1 if, and only if, (x0, t0) is a regular point of the flow.

The following local regularity theorem of White [56] says that it is enough to show

that the Gaussian density ratios are close to one in a ball to find a priori estimates on

the curvature of the manifolds in the flow inside a smaller ball.

Theorem 2.2.2 (Local regularity). Let (Mt)0≤t<T be a mean curvature flow and let

τ > 0. There are constants ε0(m, k) > 0 and C0(m, k, τ) <∞ such that if ∂Mt∩B2r =

∅ for t ∈ [0, r2) and

Θ(x, t, ρ) ≤ 1 + ε0,

for ρ ≤ τ
√
t, x ∈ B2r(x0), t ∈ [0, r2), then

|A|(x, t) ≤ C0√
t
,

for x ∈ Mt ∩ Br(x0), t ∈ [0, r2), where A(x, t) is the second fundamental form of Mt

at the point x.
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Finally, we state what it means for two manifolds to be ε-close in C1,α.

Definition 2.2.3. Let U ⊆ Rm+k be an open set and let Σ and L be twom-dimensional

submanifolds of Rm+k that are defined in U . We say that Σ and L are 1-close in

C1,α(W ) for any W ⊆ U with dist(W,∂U) ≥ 1 if for all x ∈ W we have that B1(x)∩Σ

and B1(x) ∩ L can be written as graphs u and v over the same m-dimensional plane

with ‖u − v‖1,α ≤ 1. We say that Σ and L are ε-close in W if after rescaling by a

factor of 1/ε, Σ and L are 1-close in ε−1W for any W with dist(ε−1W, ε−1∂U) ≥ 1.

2.2.1 Lagrangian mean curvature flow

Suppose that (Lt)0≤t<T is a mean curvature flow in Cm with L0 a Lagrangian subman-

ifold of Cm. It was shown by Smoczyk [53, Thm 1.9] that Lt remains a Lagrangian

submanifold of Cm for all t ∈ [0, T ). (In fact this result holds as long as the ambient

manifold is Kähler–Einstein.) This is known as Lagrangian mean curvature flow.

We will now gather some useful preliminaries specific to Lagrangian mean curvature

flow.

Definition 2.2.4. Let L be a Lagrangian submanifold of a Calabi–Yau manifold and

let Ω be a holomorphic volume form on M . Then

Ω|L = eiθLvolL, (2.2.5)

where θL is a multi-valued function on L called the Lagrangian angle of L. If θL : L→

R is a well-defined function, then we call L zero-Maslov or graded.

Remark. A zero-Maslov Lagrangian remains zero-Maslov under mean curvature flow

[53, Thm 2.9].

We have the following remarkable relationship between the Lagrangian angle and the

mean curvature vector on a Lagrangian submanifold (see [55, Lem 2.1] for a proof)

~H = J∇θL, (2.2.6)

where J is the complex structure of the ambient manifold. Since a special Lagrangian

has constant Lagrangian angle, this tells us that stationary Lagrangians are special
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Lagrangians and therefore minimal. Since a special Lagrangian is zero-Maslov, and

the property of being zero-Maslov is preserved along the flow, if we hope to evolve a

Lagrangian under mean curvature flow to a special Lagrangian, we should take the

initial Lagrangian itself to be zero-Maslov.

Definition 2.2.5. Consider Cm with coordinates (x1, ...xm, y1, ..., ym) and complex

structure J0 acting as follows

J0

(
∂

∂xj

)
=

∂

∂yj
, J0

(
∂

∂yj

)
= − ∂

∂xj
,

with the standard Kähler form ω0 and holomorphic volume form Ω0. Define the

Liouville form on Cm to be

λ :=
m∑
j=1

xjdyj − yjdxj. (2.2.7)

Notice that dλ = 2ω0. Say that a Lagrangian submanifold L of Cm is exact if λ|L =

dβL, where βL ∈ C∞(L).

Remark. Since λ|L is a closed one-form on any Lagrangian L, it follows that all

Lagrangian submanifolds of Cm are locally exact.

2.2.2 A special type of solution to mean curvature flow

We are motivated in this chapter by the occurrence of singularities in mean curvature

flow.

Definition 2.2.6. Say that a mean curvature flow (Mt)0≤t<T has a finite time sin-

gularity at time t = T if the flow cannot be smoothly extended to T + ε for any

ε > 0.

Remark. It is well known that if the maximal existence time T of a mean curvature

flow (Mt)0≤t<T is finite then

lim sup
t→T

sup
x∈Mt

|A(x, t)|2 =∞,



2.2. MEAN CURVATURE FLOW 31

where A(x, t) is the second fundamental form of Mt at x (see [54, Prop 3.11] for more

details). So gaining a priori control of the curvature is an important tool for showing

existence of a mean curvature flow.

In this section we will introduce two special types of solution to mean curvature flow.

Definition 2.2.7. Call an m-dimensional manifold Σ′ in Rm+k a self-shrinker if its

mean curvature vector satisfies the elliptic equation

~H(x) = −x⊥, (2.2.8)

where x ∈ Σ′ ⊆ Rm+k. In this case, (Σ′t)−∞<t<0 with Σ′t :=
√
−2tΣ′ is a homothetically

shrinking solution to mean curvature flow.

Remark. Self-shrinkers model the formation of certain types of singularity in mean

curvature flow. However, there are no nontrivial zero-Maslov Lagrangian self-shrinkers

in Cm [46, Cor 3.5(i)].

Definition 2.2.8. An m-dimensional manifold Σ in Rm+k is a self-expander if its

mean curvature vector satisfies the elliptic equation

~H(x) = x⊥, (2.2.9)

where x ∈ Σ ⊆ Rm+k. In this case, (Σt)0<t<∞, where Σt :=
√

2tΣ is a homothetically

expanding solution to mean curvature flow.

Remark. It is known [46, Cor 3.5 ii)] that if (Lt)t>0 is an exact, smooth, zero-Maslov

Lagrangian mean curvature flow with area ratios bounded below such that Lεi con-

verges in the sense of varifolds to a cone L0 as εi → 0, then L1 is a self-expander. Thus

we can think of self-expanders as providing us with a solution to Lagrangian mean

curvature flow starting from a cone.

To prove Theorem 2.3.1, we seek a solution to Lagrangian mean curvature flow for

a Lagrangian with singular points asymptotic to a particular cone. As a result, we

are interested in self-expanders that are asymptotic to this cone. Such a family of

Lagrangian self-expanders has been constructed explicitly by Joyce–Lee–Tsui.
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Theorem 2.2.3 ([27, Thms C, D]). Let P1 and P2 be transversally intersecting La-

grangian planes in Cm so that neither P1 + P2 or P1 − P2 are area minimising.

Then there exists an exact, zero-Maslov, Lagrangian self-expander Σ with bounded

Lagrangian angle so that
√

2tΣ converges to P1 +P2 in the sense of varifolds as t→ 0.

A result fundamental to the proof of Theorem 2.3.1 is the uniqueness of the self-

expander given in Theorem 2.2.3. The following result was proved by Lotay–Neves

when the ambient manifold is C2 [40, Thm B] using analytic techniques. The result

was proved by Imagi–Joyce–Oliveira dos Santos [19, Thm 1.2] in Cm for m > 2 using

Fukaya categories.

Theorem 2.2.4 ([40, Thm B],[19, Thm 1.2]). Let P1 and P2 be a pair of transversally

intersecting Lagrangian planes in Cm such that neither P1 + P2 or P1 − P2 are area

minimising. Suppose that Σ′ is a zero-Maslov self-expander asymptotic to P1 + P2.

Then Σ′ = Σ, where Σ is the self-expander constructed in the proof of Theorem 2.2.3.

2.3 Singularities of LMCF

We have now covered the preliminaries required to state the main theorem of this

chapter, Theorem 2.3.1 below, as well as discuss the highlights of the proof. We will

first discuss some results on Lagrangian mean curvature flow that motivate this result.

We first note that when the initial condition for Lagrangian mean curvature flow is

zero-Maslov, the structure of finite time singularities that develop under the flow is rel-

atively well understood. It was shown by Neves [45, Thm A] that if a Lagrangian mean

curvature flow beginning from a zero-Maslov Lagrangian with bounded Lagrangian an-

gle develops a finite time singularity, then the singular point must be asymptotic to a

finite union of special Lagrangian cones. Recall that special Lagrangian cones in C2

are intersecting planes.

A later result of Neves [47, Thm 6.1] indicates that finite time singularities of La-

grangian mean curvature flow are unavoidable. Specifically, he showed that if M is a
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two-dimensional Calabi–Yau manifold and Σ is an embedded Lagrangian, then there

is a Lagrangian L in the same Hamiltonian isotopy class as Σ that develops a finite

time singularity when evolved under Lagrangian mean curvature flow. Noting that the

Hamiltonian isotopy class of a zero-Maslov Lagrangian is preserved by mean curvature

flow, this means that even if a Hamiltonian isotopy class contains a special Lagrangian,

it is likely that under Lagrangian mean curvature flow, a Lagrangian in this class will

develop singularities before converging to the special Lagrangian. Therefore in order

for the theory to progress, new techniques must be developed in order to continue the

flow beyond the occurrence of singularities.

It was conjectured by Joyce [26, Prob 3.14] that if the singularities developed by the

flow were of a certain form then one would be able to continue the flow uniquely

in some weak sense beyond the singular time. The following result of the author in

collaboration with Tom Begley [5, Thm 6.1] is a proof of the existence part of the

aforementioned conjecture.

Theorem 2.3.1. Suppose that L ⊂ Cm is a compact zero-Maslov Lagrangian subman-

ifold of Cm with a finite number of singularities, each of which is asymptotic to a pair

of transversally intersecting planes P1 +P2 where neither P1 +P2 nor P1−P2 are area

minimising. Then there exist T > 0 and a Lagrangian mean curvature flow (Lt)0<t<T

such that as t↘ 0, Lt → L as varifolds and in C∞loc away from the singularities.

Remark. While it has been assumed the singular Lagrangian L lies inside Euclidean

space, the local nature of the analysis used to prove the result means that this result

can quite easily be generalised to a singular Lagrangian inside a Calabi–Yau manifold.

The assumption on the structure of the singular points of L may seem somewhat

restrictive, however, as stated above, we know that singularities developed by the flow

must be asymptotic to a finite union of special Lagrangian cones, and such a union in

C2 is a union of Lagrangian planes.

The proof of this result is very similar to the proof of an analogous result for network

flows of Ilmanen–Neves–Schulze [18, Thm 1.1]. The idea is very simple. We construct
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a family of smooth compact Lagrangians Ls for 0 < s ≤ c by desingularising L. We

will discuss how this is done in detail in Section 2.3.1 below. Then standard short time

existence for mean curvature flow yields for each s a mean curvature flow (Lst)0≤t<Ts

for some time Ts > 0. We will show that infs>0 Ts = T0 > 0, and so we may apply

a compactness result that allows us to pass to a subsequential limit (in s) of flows,

where the limiting flow (Lt)0<t<T0 will be smooth and exist for time 0 < t < T0. To

do this we need to be able to control the Gaussian density ratios of the manifolds Lst

uniformly in t and s. We will give an overview of this part of the proof in Section

2.3.2.

2.3.1 Construction of the approximating family

We consider a Lagrangian submanifold L of Cn with a singularity at the origin which is

asymptotic to the pair of planes P considered in Theorem 2.3.1. We will approximate

L by gluing in the unique self-expander Σ of Theorem 2.2.3 which is asymptotic to P

at smaller and smaller scales in place of the singularity.

Proposition 2.3.2. Let L be an exact, zero-Maslov Lagrangian submanifold of Cm

with a singular point at the origin asymptotic to the pair of planes P described in

Theorem 2.3.1. Let Σ denote the unique zero-Maslov self-expander asymptotic to P .

Then there exists a family (Ls)0<s≤c of smooth compact zero-Maslov Lagrangians, exact

in the ball B4(0) satisfying the following conditions.

(H1) The area ratios are uniformly bounded, i.e. there exists a constant D1 such that

Hm(Ls ∩Br(x)) ≤ D1r
m ∀r > 0, ∀s ∈ (0, c], ∀x.

(H2) There is a constant D2 such that for every s and x ∈ Ls ∩B4(0)

|θs(x)|+ |βs(x)| ≤ D2(|x|2 + 1),

where θs and βs are, respectively, the Lagrangian angle of Ls and a primitive for

the Liouville form on Ls.
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(H3) For any α ∈ (0, 1), the rescaled manifolds L̃s := (2s)−1/2Ls converge in C1,α
loc to

Σ. Moreover the second fundamental form of L̃s is bounded uniformly in s and

without loss of generality we can assume that

lim
s→0

(θ̃s + β̃s) = 0

locally on L̃s. (Note that L̃s is exact in the ball B4(2s)−1/2(0) so we can make

sense of β̃s in the limit.)

(H4) The connected components of P ∩ A(r0

√
s, 4) are in one to one correspondence

with the connected components of Ls ∩ A(r0

√
s, 4), and each component can be

parametrised as a graph over the corresponding plane Pi

Ls ∩ A(r0

√
s, 3) ⊂ {x+ us(x)|x ∈ P ∩ A(r0

√
s, 3)} ⊂ Ls ∩ A(r0

√
s, 4),

where the function us : P ∩ A(r0

√
s, 3) → P⊥ is normal to P and satisfies the

estimate

|us(x)|+ |x| |∇us(x)|+ |x|2|∇2us(x)| ≤ D3

(
|x|2 +

√
2se−b|x|

2/2s
)
,

where ∇ denotes the covariant derivative on P , and b > 0.

Proof. Since L is conically singular we may write L∩B4(0) as a graph over P ∩B4(0)

(possibly rescaling L so that this is the case). We may further apply the Lagrangian

neighbourhood theorem (its extension to cones was proved by Joyce, [23, Thm 4.3]),

so that we may identify L ∩ B4(0) with the graph of a one-form γ on P . Recall that

the manifold corresponding to the graph of such a one-form is Lagrangian if and only

if the one-form is closed.

Moreover, since we have assumed that L is exact inside B4(0), there exists u ∈ C∞(P∩

B4(0)) such that du = γ. Since we know that γ must decay quadratically, we can

choose a primitive for γ which has cubic decay, i.e.,

|∇ku(x)| ≤ C|x|3−k. (2.3.1)
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We saw in Theorems 2.2.3 and 2.2.4 that there exists a unique, smooth zero-Maslov

self-expander asymptotic to P . We may also identify the self-expander outside a

ball of radius r0 with the graph of a one-form over P and, since a zero-Maslov class

Lagrangian self-expander is globally exact, there exists a function v ∈ C∞(P\Br0(0))

such that the self-expander is described by the exact one-form ψ = dv on P\Br0(0).

Further, Lotay and Neves proved that [40, Thm 3.1]

‖v‖Ck(P\Br(0)) ≤ Ce−br
2

for all r ≥ r0. (2.3.2)

We will glue Σs :=
√

2sΣ into the initial condition L to resolve the singularity. Our

new manifold, Ls, will be the rescaled self-expander Σs inside Br0
√

2s(0), the mani-

fold L outside B4(0) and will smoothly interpolate between the two on the annulus

A(r0

√
2s, 4).

To do this, we will glue together the primitives of the one-forms corresponding to these

manifolds, before taking the exterior derivative. This gives us a one-form that will

describe Ls on the annulus A(r0

√
2s, 4), which ensures Ls is still Lagrangian and is

exact in B4(0). We will then show that this family satisfies the properties (H1)-(H4).

Let ϕ : R+ → [0, 1] be a smooth function satisfying ϕ ≡ 1 on [0, 1] and ϕ ≡ 0 on

[2,∞). Consider the one-form given by, for r0

√
2s ≤ |x| ≤ 4, 0 < s ≤ c

γs(x) = dws(x) = d
[
ϕ(s−1/4|x|)2sv(x/

√
2s) + (1− ϕ(s−1/4|x|))u(x)

]
, (2.3.3)

where we have that r0

√
2s < s1/4 < 2s1/4 < 4 holds for all s ≤ c. Notice that in

particular we must have c < 1. Then γs(x) ≡ ψs(x) :=
√

2sψ(x/
√

2s), the one-form

corresponding to the rescaled self-expander Σs for |x| < s1/4 and γs ≡ γ for |x| > 2s1/4.

Notice that since γs is exact, it is closed and therefore its graph corresponds to an

exact Lagrangian.

We define the smooth exact Lagrangian Ls by

• Ls ∩Br0
√

2s(0) = Σs ∩Br0
√

2s(0),

• Ls ∩ A(r0

√
2s, 4) =graph γs,
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• Ls\B4(0) = L\B4(0).

We will now show that Ls satisfies (H1)-(H4).

For (H1), notice that both the self-expander and the initial condition individually

satisfy (H1), and so for the rescaled self-expander, we have that for all x

Hn(Σs ∩BR(x)) = Hn((
√

2sΣ) ∩BR(x)) = (2s)n/2Hn(Σ ∩BR/
√

2s(x))

≤ (2s)n/2D1

(
R√
2s

)n
= D1R

n.

Since Ls interpolates between Σs and L on a compact region, Ls satisfies (H1).

We see that (H2) is satisfied because the Lagrangian angle of the initial condition L

and the self-expander Σ are bounded, as is that of the rescaled self-expander Σs by the

evolution equation [5, Lem 3.1(i)] and the maximum principle, since the Lagrangian

angle of P is locally constant. When we interpolate between the two, we may consider

the formula for the Lagrangian angle of a Lagrangian graph, as seen in [11, pg 5]. This

tells us that a Lagrangian graph in Cn (over Rn) given by (x1, ..., xn, u1(x), ..., un(x)),

where u : Rn → R, ui := ∂u
∂xi
, has Lagrangian angle

θ =
∑

arctanλi,

where the λi’s are the eigenvalues of the Hessian of u. Since the eigenvalues of the

Hessian of u are some nonlinear function of the second derivatives of u, if the C2 norm

of u is small we have that the Lagrangian angle of the graph is close to that of the

Lagrangian angle of the plane that u is a graph over. So we can uniformly bound the

Lagrangian angle of the graph. Since in our case, the Lagrangian angle of γs is given

by the sum of arctangents of the eigenvalues of the Hessian of the function ws, and, as

we will show when we prove (H4), the C2 norm of ws is small, this means that we can

uniformly bound the Lagrangian angle of the graph γs, and so the Lagrangian angle

of Ls.

On the initial condition, since λ = Jx, we have that dβL = λ|L = (Jx)T . Therefore, βL

is bounded quadratically, and so is the primitive for the Liouville form of Ls\B2s1/4(0).
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On the self-expander, applying the maximum principle to the evolution equation for θst

[5, Lem 3.1(i)], we have βs (the primitive of λ|Σs) is bounded by βP , and so |βs(x)| ≤

|βP (x)| ≤ C|x|2 for |x| < s1/4. So it remains to check this still holds where we

interpolate. We perform a calculation similar to that in the proof of [5, Lem 3.1(ii)].

We have that, for Lst the manifold described by the graph of the one-form tdws,

d

dt
λ|Lst =: LJ∇wsλ|Lst = d(J∇wsyλ|Lst ) + J∇wsydλ|Lst .

Since dλ = ω and J∇wsyω = dws and possibly adding constant to βst dependent on s

and t, we have that

dβst
dt

= −2ws + 〈x,∇ws〉|Lst ,

where dβst is equal to the restriction of the Liouville form λ to graph of tγs. Integrating,

we find that

βs = βP − 2ws +

∫ 1

0

〈x,∇ws〉|Lst dt,

where βP is the primitive for λ on P . Now, ws is bounded independently of s by

D(1 + |x|2), using (2.3.1) and (2.3.2), as is 〈x,∇ws〉, using Cauchy-Schwarz and the

estimates (2.3.1) and (2.3.2) so we find that βs is bounded independently of s on the

annulus A(s1/4, 2s1/4). Therefore, we have that

|θs(x)|+ |βs(x)| ≤ D2(|x|2 + 1).

and so (H2) is satisfied.

To show that (H3) is satisfied, recall that we define Ls as Ls ∩ Br0
√

2s(0) = Σs ∩

Br0
√

2s(0), Ls\B4(0) = L\B4(0) and we interpolate smoothly between the two, which

exactly happens when s1/4 ≤ |x| ≤ 2s1/4. Therefore when we rescale by 1/
√

2s, we

have that L̃s ∩Br0(0) ≡ Σ. So it remains to check convergence outside this ball.

On the annulus r0 ≤ |x| ≤ 4/
√

2s, L̃s is identified with the graph of the following

one-form

γ̃s(x) = d

[
ϕ(s1/4|x|)v(x) + (1− ϕ(s1/4|x|))u(

√
2sx)

2s

]
.
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From this expression, noticing that

u(
√

2sx)

2s
≤ C

(2s)3/2x3

2s
= C
√

2sx,

we see that as s → 0, γ̃s → dv = ψ, the one-form whose graph is identified with Σ.

This says that, outside Br0(0), L̃s → Σ as s → 0 smoothly. Therefore we actually

have stronger than the required C1,α
loc convergence.

Finally, we check that the second fundamental form of L̃s is uniformly bounded in

s. We have that the second fundamental form of Σ must be bounded, and if A

is the second fundamental form of L, rescaling L by 1/
√

2s means that the second

fundamental form scales by
√

2s. Since
√

2s < 1, we can uniformly bound both second

fundamental forms so that L̃s, which is a combination of both Σ and 1/
√

2sL, has

second fundamental form uniformly bounded in s.

To see (H4), first notice that since we can write Ls ∩ A(r0

√
2s, 4) as a graph over

P ∩ A(r0

√
2s, 4), we have that Ls has the same number of connected components as

P in the annulus A(r0

√
2s, 4).

We now must estimate γs. Firstly, note that we have

|∇k(v(x/
√

2s))| ≤ |(2s)−k/2(∇kv)(x/
√

2s)| ≤ C(2s)−k/2e−b|x|
2/2s, (2.3.4)

where we have used (2.3.2).

We will need different estimates on 2s∇2v(x/
√

2s) and 2s∇3v(x/
√

2s), which we find

as follows.

|2s∇2v(x/
√

2s)| ≤ Ce−b|x|
2/2s = C

√
2s

|x|
|x|√
2s
e−b|x|

2/2s

= C

√
2s

|x|
e−b̃|x|

2/2s |x|√
2s
e−b̃|x|

2/2s ≤ C̃

√
2s

|x|
e−b̃|x|

2/2s, (2.3.5)

where b̃ = b/2 and C̃ = Ce−1/2/
√
b, since the function y 7→ ye−by

2/2 is bounded

independently of y (by e−1/2/
√
b) on R, and so C̃ is independent of s.
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A similar calculation, this time noticing the uniform boundedness of the function

y 7→ ye−by/2 for y > 0 we can show that

|2s∇3v(x/
√

2s)| ≤ C

√
2s

|x|2
e−b|x|

2/2s, (2.3.6)

where we make C (which remains independent of s) larger if necessary and b smaller

(which does not affect the previous estimates).

We have, using the definition in (2.3.3),

|γs| = |∇ws| = |ϕ′(s−1/4|x|)2s3/4v(x/
√

2s) + ϕ(s−1/4|x|)2s∇[v(x/
√

2s)]

− s−1/4ϕ′(s−1/4|x|)u(x) + (1− ϕ(s−1/4|x|))∇u(x)|,

and, using that s3/4 =
√
ss1/4 <

√
s since s < 1, (2.3.1) and (2.3.4) imply that

|γs| ≤
√

2sCe−b|x|
2/2s +

√
2sCe−b|x|

2/2s + C|x|3−1 + C|x|2

≤ C
[√

2se−b|x|
2/2s + |x|2

]
, (2.3.7)

where we have made C larger.

Now consider

|∇γs| = |∇2ws| = |ϕ′′(s−1/4|x|)2s1/2v(x/
√

2s) + ϕ′(s−1/4|x|)4s3/4∇[v(x/
√

2s)]

+ ϕ(s−1/4|x|)2s∇2[v(x/
√

2s)]− s−1/2ϕ′′(s−1/4|x|)u(x)

− 2s−1/4ϕ′(s−1/4|x|)∇u(x) + (1− ϕ(s−1/4|x|))∇2u(x)|

Using that on the support of ϕ′ and ϕ′′ we have (s < 1)
√
s < s1/4 ≤

√
2
√

2s/|x|, and

applying the estimates (2.3.4) and (2.3.5)

|∇γs| ≤ C

[(√
2s

|x|
+

√
2s

|x|
+

√
2s

|x|

)
e−b|x|

2/2s + |x|3−2 + |x|2−1 + |x|

]

≤ C

[√
2s

|x|
e−b|x|

2/2s + |x|

]
. (2.3.8)

Finally, performing a similar computation to those above and combining (2.3.4), (2.3.5)

and (2.3.6) we find that

|∇2γs| ≤ C

[√
2s

|x|2
e−b|x|

2/2s + 1

]
. (2.3.9)
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Combining (2.3.7), (2.3.8) and (2.3.9), we have that

|γs|+ |x||∇γs|+ |x|2|∇2γs| ≤ D3

(
|x|2 +

√
2se−b|x|

2/2s
)
,

where D3 is a constant independent of s. Therefore (H4) is satisfied.

2.3.2 Overview of the proof of Theorem 2.3.1

Having proved the existence of the approximating family (Ls)0<s≤c in Proposition

2.3.2, we will now give an overview of the main ideas needed to complete the proof

of Theorem 2.3.1. The following theorem, a rescaled version of [5, Thm 5.1], gives

uniform control over a modified version of the Gaussian density ratios. From this

result, the proof of Theorem 2.3.1 essentially follows from the local regularity theorem

2.2.2.

Theorem 2.3.3. Let (Ls)0<s≤c be the family of compact Lagrangians satisfying (H1)–

(H4) constructed in Proposition 2.3.2. Denote by (Lst)0≤t<Ts the smooth solution to

Lagrangian mean curvature flow with initial condition Ls. Let ε0 > 0. Then there

exist s0, δ0 and τ depending on D1, D2, D3, Σ and r0 so that if

t ≤ δ0, r
2 ≤ τ and s ≤ s0,

then

Θ̃s
t(x0, r) ≤ 1 + ε0, (2.3.10)

for all x0 with |x0| ≤ (2(s+ t))−1/2. Here

Θ̃s
t(x0, r) :=

∫
L̃st

ρ(x0,0)(x,−r2) dHm(x) =

∫
L̃st

1

(4πr2)m/2
e−|x−x0|2/4r2

dHm(x),

are the Gaussian density ratios for the rescaled manifolds

L̃st =
Lst√

2(s+ t)
.

The properties (H1)–(H4) of the family Ls allow us to obtain estimates of the form

(2.3.10) everywhere. The most interesting part of the proof is showing that these
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estimates hold uniformly for s ≤ s0 and t ≤ δ0 and x0 in some compact set K. We will

sketch this part of the proof. We first require the following stability result [5, Thm

4.2].

Theorem 2.3.4. Fix R, r, τ > 0, α, ε0 < 1, and C,M < ∞. Let Σ be the unique

smooth zero-Maslov Lagrangian self-expander asymptotic to P1 + P2 given by The-

orem 2.2.4. Then for all ε > 0 there exists R̃ ≥ R, η, ν > 0 each dependent on

ε0, ε, r, R, τ, α, C,M and P1 + P2 such that if L is a smooth Lagrangian submanifold

which is zero-Maslov in BR̃(0) and

(i) |A| ≤M on L ∩BR̃(0),

(ii)
∫
L
ρ(x,0)(y,−r2) dHm ≤ 1 + ε0 for all x and 0 < r ≤ τ ,

(iii)
∫
L∩BR̃(0)

| ~H − x⊥|2 dHm ≤ η,

(iv) The connected components of L∩A(r, R̃) are in one to one correspondence with

the connected components of (P1 + P2) ∩ A(r, R̃) and

dist(x, P ) ≤ ν + C exp

(
−|x|

2

C

)
,

for all x ∈ L ∩ A(r, R̃);

then L is ε-close to Σ in C1,α(BR̃(0)) in the sense of Definition 2.2.3.

This theorem is proved by contradiction. If Theorem 2.3.4 does not hold then we can

negate it to construct a sequence of Lagrangians (Li), none of which are ε-close to

Σ, satisfying properties which force a subsequence of (Li) to converge to a smooth

self-expander L∞ asymptotic to P1 + P2. By the uniqueness theorem 2.2.4 we must

have that L∞ = Σ, which is a contradiction.

The second result that we require is the following monotonicity result, see [5, Lem 5.7]

for this result in full generality.

Lemma 2.3.5. Let a > 1, η > 0 and R > 0. Then there exists δ > 0 such that if

s ≤ T ≤ δ, then

1

(a− 1)T

∫ aT

T

∫
L̃st∩BR(0)

| ~H − x⊥|2 dHm dt ≤ η.
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Lemma 2.3.5 follows roughly from the evolution equations for the Lagrangian angle

and primitive for the Liouville form [5, Lem 3.1] and the monotonicity formula 2.2.1.

Sketch proof of Theorem 2.3.3. Let τ > 0 be a carefully chosen real number and let

K be a compact set. Since each Ls is a compact Lagrangian, standard short time

existence for Lagrangian mean curvature flow tells us that

Ts := sup{T | Θ̃s
t(x0, r) ≤ 1 + ε0 ∀r2 ≤ τ, t ≤ T, x0 ∈ K} > 0,

for each s > 0.

Fix ε > 0, and let R̃, ν and η be as in Theorem 2.3.4. Choose a > 1. An application

of Lemma 2.3.5 with a, R̃ and η yields a δ > 0. It is claimed that Ts > δ for all s > 0.

Suppose not, that is, Ts1 < δ for some s1 > 0. Let T = Ts1/a. Then we may deduce

from Lemma 2.3.5 that there exists t1 ∈ (Ts1/a, Ts1) with∫
L̃
s1
t1
∩BR̃(0)

| ~H − x⊥|2 dHm < η.

So L̃s1t1 satisfies condition (iii) of Theorem 2.3.4. Further, by definition of Ts1 , L̃s1t1

must satisfy hypothesis (ii) of Theorem 2.3.4. With some extra work because of the

rescaling, we may deduce that L̃s1t1 satisfies hypothesis (i) of Theorem 2.3.4 from the

local regularity theorem 2.2.2. Finally, from condition (H4) and a little work it can

be deduced that L̃s1t1 satisfies hypothesis (iv) of Theorem 2.3.4.

So Theorem 2.3.4 tells us that L̃st0 is close in C1,α(BR̃(0)) to the self-expander Σ.

However, this gives us control over the Gaussian density ratios for a time interval

exceeding Ts1 (see [5, Lem 8.2]), a contradiction.

2.3.3 Concluding remarks

While Theorem 2.3.1 brings us a step closer to a method for extending Lagrangian

mean curvature flow beyond a finite time singularity, there are still several issues that
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need to be overcome before this result can be made more general. For instance, while

Theorem 2.3.1 establishes existence for Lagrangian mean curvature flow, it remains to

see whether this solution is unique.

Moreover, the method used to prove Theorem 2.3.1 may be somewhat restrictive. Say

that we wanted to prove short-time existence for Lagrangian mean curvature flow start-

ing from any compact conically singular zero-Maslov Lagrangian, i.e., a Lagrangian

with a singular point asymptotic to a cone C. In order to establish short-time exis-

tence for Lagrangian mean curvature flow starting from such a Lagrangian using the

method described in this chapter, one requires the existence of a unique self-expander

asymptotic to C. This may be a lot to ask, and so it could be beneficial to seek an

alternative method to prove Theorem 2.3.1 that is more robust.



Chapter 3

Deformation theory of compact

Cayley submanifolds

In this chapter, we consider Cayley deformations of compact Cayley submanifolds. We

will pay special attention to the case where the ambient manifold is a four-dimensional

Calabi–Yau manifold and the Cayley submanifold is a two-dimensional complex sub-

manifold.

3.1 Introduction

Consider a complex surface N inside a Calabi–Yau four-fold M . As we have seen, N is

not only a complex submanifold of M , but also a Cayley submanifold of M . A natural

question to ask is whether we can deform N as a Cayley submanifold into a Cayley

submanifold N ′ of M that is not a complex submanifold of M . We can actually see

from the work of Harvey and Lawson [15] that this is not possible when N is compact.

Recall the result of Harvey and Lawson quoted in Proposition 1.2.6. Let N be as

above and let N ′ be a Cayley deformation of N . Then N ′ is certainly homologous to

N , and since calibrated submanifolds are volume minimising in their homology class,

45
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we must have that ∫
N

volN =

∫
N ′

volN ′ .

But then Proposition 1.2.6 tells us that N ′ must also be a complex submanifold.

The ultimate aim of this chapter is to recover this result directly and to understand

geometrically why this is the case.

We begin this chapter with a literature review of some important works relevant to this

problem. In particular, we will state Kodaira’s theorem 3.1.1 on the deformation the-

ory of compact complex submanifolds and McLean’s theorem 3.1.3 on the deformation

theory of compact Cayley submanifolds.

In Section 3.2 we give a proof of Theorem 3.2.6, stated below, on Cayley deformations

of a compact Cayley submanifold inside a Spin(7)-manifold.

Theorem. Let (X, g,Φ) be a Spin(7)-manifold and let Y be a compact Cayley sub-

manifold of X. Let D denote the first order elliptic operator defined in (3.2.6). Then

there exist a smooth manifold K0, which is an open neighbourhood of 0 in Ker D, and

a smooth map g2 : K0 → Ker D∗ with g2(0) = 0 so that an open neighbourhood of Y

in the moduli space of Cayley deformations of Y in X is homeomorphic to an open

neighbourhood of 0 in Ker g2.

Moreover, the expected dimension of the moduli space of Cayley deformations of Y in

X is given by

ind D := dim Ker D − dim Ker D∗,

where

D∗ : C∞(E)→ C∞(νX(Y )),

is the formal adjoint of D. If Ker D∗ = {0} then the moduli space of Cayley deforma-

tions of Y in X is a smooth manifold near Y of dimension

dim Ker D.



3.1. INTRODUCTION 47

This theorem is proved by following a method developed by McLean [43] for studying

the deformations theory of compact calibrated submanifolds.

In Section 3.3 we will consider Cayley deformations of a compact complex surface N

in a Calabi–Yau four-fold M . We may apply the results of Section 3.2 to N , however

since N is a complex surface we can exploit its complex structure to identify ‘small’

Cayley deformations of N with the kernel of a geometrically (and holomorphically)

natural first order elliptic operator. Once we have made this identification, it will not

be difficult to deduce the next main result of the chapter, Theorem 3.3.4.

Theorem. Let N be a two-dimensional compact complex submanifold of a Calabi–

Yau four-fold M . Then the expected (real) dimension of the moduli space of Cayley

deformations of N in M is equal to the (complex) index of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)).

Moreover, if the kernel of

∂̄ + ∂̄∗ : C∞(Λ0,1N ⊗ ν1,0
M (N))→ C∞(ν1,0

M (N)⊕ Λ0,2N ⊗ ν1,0
M (N)),

is {0} then the moduli space of Cayley deformations of N in M is a smooth manifold

near N of dimension

dim Ker ∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)).

This will allow us to deduce an expression for the expected dimension of this moduli

space in terms of topological invariants on N in Theorem 3.3.5.

In Section 3.4 we will compare complex and Cayley deformations of N by applying a

McLean-style argument to characterise the complex deformations of N in M . Recall

that in Proposition 1.2.9 we defined a differential form τ on a Spin(7)-manifold that

vanishes if, and only if restricted to a Cayley submanifold. Section 3.4.1 will be

dedicated to finding a differential form, σ, say, on a Calabi–Yau manifold that vanishes

if, and only if, it is restricted to a two-dimensional complex submanifold of that Calabi–

Yau. This will allow us to identify complex deformations of a compact complex surface
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in a Calabi–Yau manifold with the kernel of a nonlinear operator. In Section 3.4.2,

we will study the properties of this operator. The section will culminate in the proof

of Theorem 3.4.7.

Theorem. Let N be a compact complex surface inside a four-dimensional Calabi–

Yau manifold M . Then the moduli space of Cayley deformations of N in M near N

is isomorphic to the moduli space of complex deformations of N in M , which near N

is a smooth manifold of dimension

dimCKer ∂̄ + dimCKer ∂̄∗ = 2 dimCKer ∂̄,

where

∂̄ : C∞(ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)),

∂̄∗ : C∞(Λ0,2N ⊗ ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)).

Finally, in Section 3.5 we will compute the index of the operator ∂̄ + ∂̄∗ for a family

of examples.

3.1.1 Literature review

The problem that we study in the subsequent chapters of thesis, in various forms,

can be broadly stated as follows. Let M be a four-dimensional Calabi–Yau manifold

with two-dimensional complex submanifold N . As we noted in Section 1.2.5, N is

also a Cayley submanifold of M . We can deform N as a real submanifold of M to

some other submanifold N ′. We would like to know when N ′ is still complex, and

whether N ′ can still be Cayley but no longer complex. In this section, we will discuss

two works that are related to this problem. The first, in Section 3.1.1, is Kodaira’s

theory of the deformation of compact complex submanifolds. The second, in Section

3.1.1 is McLean’s study of the deformation of compact Cayley submanifolds inside a

Spin(7)-manifold.
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Kodaira’s deformation theory of complex submanifolds

The deformation theory of the canonical example of a calibrated submanifold, complex

submanifolds, was studied using techniques from algebraic geometry by Kodaira [31].

We will later be deforming complex submanifolds of a Calabi–Yau manifold, although

our approach will be very different. It will be interesting to compare the results of

these different approaches, and so we will quote Kodaira’s theorem here.

Write Hk(N, ν1,0
M (N)) for the kth sheaf cohomology group of the sheaf of holomorphic

sections of the holomorphic normal bundle of a complex submanifold N of a complex

manifold M . Define the moduli space of complex deformations of N in M to be the

set of complex submanifolds N ′ of M so that there exists a diffeomorphism N → N ′

isotopic to the identity.

Theorem 3.1.1 (Kodaira [31, Main Thm]). Let M be a complex manifold with com-

pact complex submanifold N . If H1(N, ν1,0
M (N)) = 0, then the moduli space of complex

deformations of N is isomorphic to H0(N, ν1,0
M (N)).

Remark. In the context of Theorem 3.1.1, we call H0(N, ν1,0
M (N)) the infinitesimal

complex deformations of N , and H1(N, ν1,0
M (N)) the obstruction space.

Dolbeault’s theorem [14, pg 45] allows us to identify the infinitesimal complex defor-

mations of a compact complex submanifold N in M with the Dolbeault cohomology

group H0,0

∂̄
(N, ν1,0

M (N)) and the obstruction space with H0,1

∂̄
(N, ν1,0

M (N)). Since N is

compact we may deduce from the Hodge decomposition theorem [17, Thm 4.1.13] the

following corollary to Kodaira’s theorem.

Corollary 3.1.2. Let M be a complex manifold with compact complex submanifold

N . Then the space of infinitesimal complex deformations of N is isomorphic to the

kernel of the operator

∂̄ : C∞(ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)).
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McLean’s deformation theory of compact Cayley submanifolds

In the mid-nineties, McLean [43] proved analogous results to Kodaira’s theorem 3.1.1

for the compact calibrated submanifolds that arise naturally in G2- and Spin(7)-

manifolds, including compact Cayley submanifolds of a Spin(7)-manifold. We quote

his main result about compact Cayley submanifolds of Spin(7)-manifolds here.

Theorem 3.1.3 ([43, Thm 6-3]). Let Y be a compact Cayley submanifold of a Spin(7)-

manifold X and suppose that Y admits a spin structure. There exists a rank two

complex vector bundle A over Y so that moduli space of Cayley deformations of Y in

X is isomorphic to the kernel of the twisted Dirac operator

/D : C∞(S+ ⊗ A)→ C∞(S− ⊗ A), (3.1.1)

as long as the kernel of the formal adjoint to (3.1.1) vanishes.

The method developed by McLean to prove this result is one that we will utilise

extensively in this chapter.

3.2 Deformation theory of compact Cayley sub-

manifolds inside Spin(7)-manifolds

To prove McLean’s result Theorem 3.1.3, one identifies deformations of a compact

Cayley submanifold with the zero set of a nonlinear partial differential operator

/F : C∞(S+ ⊗ A)→ C∞(S− ⊗ A),

which has linear part

/D : C∞(S+ ⊗ A)→ C∞(S− ⊗ A),

the twisted Dirac operator. In this section, following McLean’s approach for proving

Theorem 3.1.3, we will prove a more general version of McLean’s result, Theorem

3.2.6. Theorem 3.2.6 is more general in the sense that it is not assumed that the
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compact Cayley submanifold being deformed has a spin structure, and moreover gives

an expression for the expected dimension of the moduli space of Cayley deformations

of a compact Cayley submanifold Y inside a Spin(7)-manifold X, defined formally

in Definition 3.2.1 below, in terms of the index of a first order elliptic differential

operator. In Proposition 3.2.3, we prove a result that we can consider isomorphic to

Theorem 3.1.3 in the following sense. We will identify Cayley deformations of Y with

the kernel of a nonlinear partial differential operator

F : C∞(νX(Y )⊗ C)→ C∞(E ⊗ C),

taking complexified normal vector fields to complexified sections of some rank four

vector bundle E, which has linear part described by the elliptic operator

D : C∞(νX(Y )⊗ C)→ C∞(E ⊗ C).

If Y admits a spin structure, then we have that

C∞(νX(Y )⊗ C) C∞(E ⊗ C)

C∞(S+ ⊗ A) C∞(S− ⊗ A)

F

/F

commutes, with a similar commutative diagram for D and /D.

The proof of Theorem 3.2.6 has been split into three main steps. Firstly, in Section

3.2.1 we describe how to identify deformations of Y with normal vector fields on Y . The

main result of this section will be Proposition 3.2.2, identifying Cayley deformations

of Y with the kernel of a nonlinear partial differential operator F . In Section 3.2.2,

we will study the operator F . In particular, we compute the linear part of F in

Proposition 3.2.3. Finally, in Section 3.2.3 the proof of Theorem 3.2.6 is completed

by applying the Banach space implicit function theorem to F . This step relies on the

observation that an elliptic operator on a compact manifold is Fredholm.
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3.2.1 Deformations as normal vector fields

Let X be a manifold with a submanifold Y . We say that Y ′ is a deformation of Y in

X if there exists a smooth family of embeddings ιt : Y → X such that ι0(Y ) = Y and

ι1(Y ) = Y ′.

Definition 3.2.1. Let (X, g,Φ) be a Spin(7)-manifold, and let Y be a Cayley sub-

manifold of X. Define the moduli space of Cayley deformations of Y ,MCay(Y ), to be

the set of deformations Y ′ of Y that are Cayley submanifolds of (X, g,Φ).

The aim of this section is to study properties of MCay(Y ) when Y is compact. To do

this, we will identify nearby deformations of Y with small normal vector fields on Y .

For this we require the tubular neighbourhood theorem. A proof of this result can be

found in [33, IV, Thm 5.1].

Theorem 3.2.1 (Tubular neighbourhood theorem). Let X be a Riemannian man-

ifold and Y be a closed embedded submanifold of X. Then there exists an open set

V ⊆ νX(Y ) containing the zero section and an open set Y ⊆ T ⊆ X such that the

exponential map

exp|V : V → T,

is a diffeomorphism.

Remark. Given a normal vector field v on Y taking values in V , we define Yv :=

expv(Y ) ⊆ T ⊆ X. Then Yv is a deformation of Y . We will denote by expv the

diffeomorphism Y → Yv. Conversely, given another submanifold Y ′ of X so that

Y ′ ⊆ T , we can use the inverse of exp |V to define a normal vector field on Y .

Recall the alternative characterisation of Cayley submanifold given by Proposition

1.2.9. A submanifold Y ′ of a Spin(7)-manifold is Cayley if, and only if,

τ |Y ′ ≡ 0,

where τ is the Λ2
7-valued four-form defined in Proposition 1.2.9. We will use this

characterisation to construct a partial differential operator acting on normal vector
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fields on a compact Cayley submanifold Y whose kernel will be precisely the normal

vector fields on Y that yield Cayley deformations of Y .

Proposition 3.2.2. Let (X, g,Φ) be a Spin(7)-manifold with compact Cayley sub-

manifold Y . Use the notation of the tubular neighbourhood theorem 3.2.1. The moduli

space of Cayley deformations of Y in X is isomorphic near Y to the kernel of the

following partial differential operator

F : C∞(V )→ C∞(E),

v 7→ π(∗Y exp∗v(τ |Yv)), (3.2.1)

where τ is defined in Proposition 1.2.9 and

Λ2
7|Y = Λ2

+Y ⊕ E, (3.2.2)

with π : Λ2
7|Y → E the projection map.

Proof. First note that we take smooth normal vector fields on Y to ensure that the

deformation corresponding to v, Yv, is a smooth manifold. Then Yv is Cayley if,

and only if, τ |Yv = 0. Since expv is a diffeomorphism, τ |Yv = 0 if, and only if,

exp∗v(τ |Yv) = 0, if, and only if ∗Y exp∗v τ |Yv ≡ 0. Finally, since τ, v and expv are smooth,

we see that ∗Y exp∗v τ |Yv ∈ C∞(Λ2
7|Y ). It remains to show that π(∗Y exp∗v τ |Yv) = 0

implies that ∗Y exp∗v τ |Yv = 0. For this we will employ a local argument.

Choose y ∈ Y . Then TyX|Y = TyY ⊕νy(Y ). Choose an orthonormal basis {e1, . . . , e8}

for TyX|Y so that

TyY = span{e1, e2, e3, e4}.

Let Y ′ be a small deformation of Y , and denote by f the diffeomorphism Y → Y ′.

Then TyX is naturally isometric to Tf(y)X. Denote an orthonormal basis of Tf(y)X by

{e′1, . . . , e′8} where ei maps to e′i under this isometry. We have that

Tf(y)Y
′ = span{v1, v2, v3, v4},

where, without loss of generality since Y ′ is a small deformation of Y we may take

vj = e′j +
8∑
i=5

λije
′
i.
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To prove the proposition we will suppose that

π(τf(y)(v1, v2, v3, v4)) = 0, (3.2.3)

and show that

τf(y)(v1, v2, v3, v4) = 0. (3.2.4)

Equation (3.2.3) gives us the following four equations

λ1
5 + λ2

6 + λ3
7 + λ4

8−
∑
6,7,8

εpqrλ
2
pλ

3
qλ

4
r −

∑
5,7,8

εpqrλ
1
pλ

3
qλ

4
r

−
∑
5,6,8

εpqrλ
1
pλ

2
qλ

4
r −

∑
5,6,7

εpqrλ
1
pλ

2
qλ

3
r = 0,

λ1
6 − λ2

5 − λ3
8 + λ4

7+
∑
5,7,8

εpqrλ
2
pλ

3
qλ

4
r −

∑
6,7,8

εpqrλ
1
pλ

3
qλ

4
r

−
∑
5,6,7

εpqrλ
1
pλ

2
qλ

4
r +

∑
5,6,8

εpqrλ
1
pλ

2
qλ

3
r = 0,

λ1
7 + λ2

8 − λ3
5 − λ4

6−
∑
5,6,8

εpqrλ
2
pλ

3
qλ

4
r −

∑
5,6,7

εpqrλ
1
pλ

3
qλ

4
r

+
∑
6,7,8

εpqrλ
1
pλ

2
qλ

4
r +

∑
5,7,8

εpqrλ
1
pλ

2
qλ

3
r = 0,

λ1
8 − λ2

7 + λ3
6 − λ4

5+
∑
5,6,7

εpqrλ
2
pλ

3
qλ

4
r −

∑
5,6,8

εpqrλ
1
pλ

3
qλ

4
r (3.2.5)

+
∑
5,7,8

εpqrλ
1
pλ

2
qλ

4
r −

∑
6,7,8

εpqrλ
1
pλ

2
qλ

3
r = 0,

where εpqr is skew-symmetric in p, q, r and εpqr = 1 when p < q < r. Notice that

if λij is a linear term, then there will be cubic terms of the form ±λlpλmq λnr , where

{l,m, n} ∈ {1, 2, 3, 4}\{i} and {p, q, r} ∈ {5, 6, 7, 8}\{j}.

Using your favourite equation solving software, we can solve for λ1
5, λ

1
6, λ

1
7 and λ1

8,

which gives us four very complicated expressions which we will not give here. To show
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that Equation (3.2.4) is satisfied, it remains to show that∑
{i,j}={5,7},{6,8}

εij(λ
1
iλ

4
j + λ2

iλ
3
j) +

∑
{i,j}={6,7},{5,8}

εij(λ
1
iλ

3
j − λ2

iλ
4
j) = 0,

∑
{i,j}={5,6},{7,8}

εij(λ
1
iλ

4
j + λ2

iλ
3
j)−

∑
{i,j}={5,8},{6,7}

εij(λ
1
iλ

2
j + λ3

iλ
4
j) = 0,

∑
{i,j}={5,6},{7,8}

εji(λ
2
iλ

4
j − λ1

iλ
3
j)−

∑
{i,j}={5,7},{6,8}

εij(λ
1
iλ

2
j + λ3

iλ
4
j) = 0,

where εij = −εji and ε75 = ε68 = ε56 = ε67 = ε78 = ε58 = 1. Substituting in the values

of λ1
5, λ

1
6, λ

1
7 and λ1

8 we found when we solved Equations (3.2.5), these three equations

vanish. Therefore, τf(y)(v1, v2, v3, v4) = 0 if, and only if, π ◦ τf(y)(v1, v2, v3, v4) = 0.

Since y ∈ Y and Y ′ were arbitrary, it follows that the kernel of π(∗Y exp∗v(τ |Yv)) and

∗Y exp∗v(τ |Yv) are the same.

Remark. Harvey and Lawson proved that the kernel of ∗Y exp∗v(τ |Yv) is the same

as the kernel of π(∗Y exp∗v(τ |Yv)) [15, IV.2.C Thm 2.20] in a significantly more clever

way. For an arbitrary linear subspace of the octonions O written as H⊕ f(H) where

f : H → H is a linear map between the quaternions, they showed that H ⊕ f(H) is

Cayley four plane of O if, and only if, H⊕ g(H) is, where g : H→ H takes a simpler

form. Applying a similar analysis to that in Proposition 3.2.2, phrased in terms of

cross products on the octonions, they were left with much simpler looking equations

than (3.2.5), which they could solve explicitly by hand. However, their proof was

only valid when detf 6= 1, a condition that the ‘brute force’ approach used above has

removed.

3.2.2 Properties of the partial differential operator F

Proposition 3.2.2 tells us that to study the moduli space of Cayley deformations of

Y in the Spin(7)-manifold X we must study the kernel of the operator F (3.2.1).

Linearising the operator F will tell us which normal vector fields on Y are Cayley

deformations to first order. We can think of this as the Zariski tangent space to

MCay(Y ) at Y .
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Proposition 3.2.3. Let (X, g,Φ) be a Spin(7)-manifold and let Y be a compact

Cayley submanifold of X. Let {e1, e2, e3, e4} be a frame for TY with dual coframe

{e1, e2, e3, e4}. Denote by F the operator (3.2.1). Then the linearisation of F at zero

is given by the elliptic operator

D : C∞(νX(Y ))→ C∞(E),

v 7→
4∑
i=1

π7(ei ∧ (∇⊥eiv)[), (3.2.6)

where E is the rank four vector subbundle of Λ2
7|Y in Equation (3.2.2), ∇⊥ : TY ⊗

νX(Y ) → νX(Y ) denotes the connection on νX(Y ) induced by the Levi-Civita con-

nection of X and π7 denotes the projection of two-forms onto Λ2
7 as in Proposition

1.2.9.

Remark. We call the vector fields in the kernel of D infinitesimal Cayley deformations

of Y in X.

Proof. First note that the operator (3.2.6) is elliptic: its symbol is given by the map

T ∗Y ⊗ νX(Y )→ E,

ξ ⊗ v 7→ π7(ξ ∧ v[),

which for each nonzero ξ surjects, and therefore the operator D is elliptic. (Note here

that we can explicitly define E in the given frame for Y as the span of π7(e1 ∧ ej) for

j = 5, . . . , 8.)

To see that (3.2.6) is the linearisation of the operator F in Equation (3.2.1), we make

an explicit computation. By definition, we have that

dF |0(v) =
d

dt
F (tv)|t=0 = ∗Lvτ |Y ,

by definition of the Lie derivative. We have that

∗Lvτ |Y = (Lvτ)(e1, e2, e3, e4),
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where {e1, e2, e3, e4} is an orthonormal frame for TY with volY (e1, e2, e3, e4) = 1, and

so we may apply a formula linking the Lie derivative to the Levi-Civita connection

such as [20, Eqn (4.3.26)] to find that

(Lvτ)(e1, e2, e3, e4) = (∇vτ)(e1, e2, e3, e4) + τ(∇e1v, e2, e3, e4)

+ τ(e1,∇e2v, e3, e4) + τ(e1, e2,∇e3v, e4) + τ(e1, e2, e3,∇e4v),

= (∇vτ)(e1, e2, e3, e4) + τ(∇e1v, e2, e3, e4)

− τ(∇e2v, e1, e3, e4) + τ(∇e3v, e1, e2, e4)− τ(∇e4v, e1, e2, e3),

since τ is a differential form. We can write the Levi-Civita connection on TX|Y as

∇ = ∇T + ∇⊥, where ∇T is the projection of ∇ onto T ∗Y ⊗ TY and ∇⊥ is the

projection of ∇ onto T ∗Y ⊗ νX(Y ). Then

τ(∇T
ei
v, ej, ek, el) = 0,

for all {i, j, k, l} = {1, 2, 3, 4} (since Y is Cayley), and therefore we have that

(Lvτ)(e1, e2, e3, e4) = (∇vτ)(e1, e2, e3, e4) + τ(∇⊥e1v, e2, e3, e4)

− τ(∇⊥e2v, e1, e3, e4) + τ(∇⊥e3v, e1, e2, e4)− τ(∇⊥e4v, e1, e2, e3).

Recalling the triple cross product κ defined in Lemma 1.2.4, we can calculate that,

since volY = e1 ∧ e2 ∧ e3 ∧ e4,

κ(e1, e2, e3) = −e4, κ(e1, e2, e4) = e3,

κ(e1, e3, e4) = −e2, κ(e2, e3, e4) = e1.

Therefore by definition of τ (see Proposition 1.2.9) we have that

(Lvτ)(e1, e2, e3, e4) = (∇vτ)(e1, e2, e3, e4) + π7(e1 ∧ (∇⊥e1v)[) + π7(e2 ∧ (∇⊥e2v)[)

+ π7(e3 ∧ (∇⊥e3v)[) + π7(e4 ∧ (∇⊥e4v)[). (3.2.7)

It remains to deal with the term

(∇vτ)(e1, e2, e3, e4).
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We saw in (1.2.14) that we can write, extending {e1, . . . , e4} to an orthonormal frame

{e1, . . . , e8} for TM |N

τ =
1

4

∑
i<j∈{1,...,8}

(ej ∧ (eiyΦ)− ei ∧ (ejyΦ))⊗ π7(ei ∧ ej).

We calculate that

∇v(e
j ∧ (eiyΦ)⊗ π7(ei ∧ ej)) = (∇ve

j) ∧ (eiyΦ)⊗ π7(ei ∧ ej)

+ ej ∧∇v(eiyΦ)⊗ π7(ei ∧ ej)

+ ej ∧ (eiyΦ)⊗∇v(π7(ei ∧ ej)). (3.2.8)

The terms in ∇vτ of the form

(ej ∧ (eiyΦ)− ei ∧ (ejyΦ))⊗∇v(π7(ei ∧ ej)),

will clearly vanish when evaluated at e1, e2, e3, e4 since this is a frame for a Cayley

submanifold.

Using a formula for the Levi-Civita connection of a differential form such as [20, Eqn

(4.3.23)] we see that

∇v(eiyΦ) = (∇vei)yΦ + eiy∇vΦ.

Since the Spin(7)-structure is torsion free, ∇vΦ = 0, and so by Equation (3.2.8) we

are left with terms in ∇vτ of the form

((∇ve
j) ∧ (eiyΦ) + ej ∧ (∇vei)yΦ)⊗ π7(ei ∧ ej).

That is,

∇vτ =
1

4

∑
i<j∈{1,...,8}

[
(∇ve

j) ∧ (eiyΦ) + ej ∧ (∇vei)yΦ

− (∇ve
i) ∧ (ejyΦ)− ei ∧ (∇vej)yΦ

]
⊗ π7(ei ∧ ej).

But we can gather ∇vτ into a sum of terms of the form

((∇ve
j) ∧ (eiyΦ)− ei ∧ (∇vej)yΦ)⊗ π7(ei ∧ ej),
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which vanish when evaluated on the Cayley frame e1, e2, e3, e4 since (∇vej)
[ = ∇ve

j =

vke
k, for some k ∈ {1, . . . , 8} and functions vk. Therefore ∇vτ = 0 and so the propo-

sition follows from Equation (3.2.7).

3.2.3 The moduli space of Cayley deformations

In order to prove Theorem 3.2.6 on the expected dimension of the moduli space of

Cayley deformations of a compact Cayley submanifold we must first prove that we can

extend the operator (3.2.1) to a smooth map of Banach spaces. The argument we use

to prove Lemma 3.2.4 is reasonably standard, and is based on the arguments in [24,

Prop 2.10] and [37, Prop 6.9]. The proof is presented here in the hope that a similar,

but more complicated, result in Chapter 5 for conically singular Cayley submanifolds

will be easier to follow.

Lemma 3.2.4. Let (X, g,Φ) be a Spin(7)-manifold and let Y be a compact Cayley

submanifold of X. Let F be the partial differential operator defined in Equation (3.2.1).

Then we can extend F to a smooth map of Banach spaces

F : Lpk+1(V )→ Lpk(E), (3.2.9)

for any 1 < p < ∞ and k ∈ N satisfying k > 1 + 4/p. Moreover, the normal vector

fields in the kernel of (3.2.9) are smooth.

Proof. At each point y of Y we have that F (v)(y) relates to the tangent space of the

deformation Yv := expv(Y ) and therefore depends on v and ∇v. We may write

F (v)(x) = Dv(x) +Q(x, v(x),∇v(x)), (3.2.10)

whereD is the linearisation of F defined in Proposition 3.2.3, and use Equation (3.2.10)

to define Q to be a map

{(x, y, z) | (x, y) ∈ V, z ∈ T ∗xY ⊗ νx(Y )} → E,

so that Q(v)(x) := Q(x, v(x),∇v(x)) is a section of E. By definition of F , Q is smooth

in x, y and z. Since we can think of Q as a map νx(Y )⊗ T ∗xY ⊗ νx(Y )→ Ex, we can
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make sense of a Taylor expansion of Q(x, y, z) around (x, 0, 0). Since by definition Q

has no linear part at zero we deduce that

|Q(x, y, z)| ≤ Cx(|y|+ |z|)2,

for each x ∈ Y . Since Y is compact, we may deduce that

‖Q(v)(x)‖C0 ≤ C‖v‖2
C1 ,

where C is independent of x. From this we see that(∫
Y

|Q(v)(x)|p volY

)1/p

≤ C

(∫
Y

(|v|+ |∇v|)2p volY

)1/p

≤ C‖v‖C1

(∫
Y

(|v|+ |∇v|)p volY

)1/p

≤ C‖v‖C1

(∫
Y

|v|p volY +

∫
Y

|∇v|p volY

)1/p

,

by Minkowski’s inequality. So we see that Q maps Lp1(νX(Y ))∩C1(νX(Y ))→ Lp(E).

We can take the derivative of the Taylor expansion of Q, and apply the chain rule

to estimate |∇Q| by a polynomial in |v|, |∇v| and |∇2v|. A similar argument to the

k = 0 case given above shows that for each k ∈ N there exists Ck > 0 so that

‖Q(v)‖p,k ≤ Ck‖v‖C1‖v‖p,k+1. (3.2.11)

In particular, when k > 4/p, Lpk+1(νX(Y )) is continuously embedded in C1(νX(Y )) by

[4, Thm 2.10], and so for k > 4/p there exist C̃k > 0 so that

‖Q(v)‖p,k ≤ C̃k‖v‖2
p,k+1. (3.2.12)

Since D is linear, we see that F takes Lpk+1(νX(Y )) into Lpk(E).

Now we must show that (3.2.9) is a smooth map of Banach spaces. Firstly, since

v 7→ Dv,

is linear, it is clearly smooth as a map

Lpk+1(V )→ Lpk(E).



3.2. DEFORMATIONS OF COMPACT CAYLEY SUBMANIFOLDS 61

To see that

v 7→ (x 7→ Q(x, v(x),∇v(x))),

is a smooth map

Lpk+1(V )→ Lpk(E),

we proceed as follows. To see that F is once differentiable at zero in this sense, notice

that
‖F (v)− F (0)−Dv‖p,k

‖v‖p,k+1

=
‖Q(v)‖p,k
‖v‖p,k+1

→ 0,

as ‖v‖p,k+1 → 0 by the estimate (3.2.12). Repeating this argument for the derivatives

of Q, we can show that we can differentiate Q as many times as we like. We deduce

that (3.2.9) is a smooth map of Banach spaces.

Finally, regularity of the kernel of (3.2.9) follows from a nonlinear elliptic regularity

result, such as [4, Thm 3.56], which we may apply since k > 1 + 4/p (which allows us

to embed Lpk+1(V ) in C2(V ) by Sobolev embedding [4, Thm 2.10]).

We will now deduce the main result of this section. For the reader’s convenience, we

will present the Banach space implicit function theorem here in the form that we will

need it. See, for example, [32, Ch 6 Thm 2.1] for a proof.

Theorem 3.2.5 (Implicit function theorem). Let X and Y be Banach spaces and let

U ⊆ X be an open neighbourhood of zero. Let F : U → Y be a Ck-map, with k ≥ 1,

such that F(0) = 0. Suppose further that dF|0 : X → Y is surjective, with kernel K

such that X = K ⊕X ′ for some closed subspace X ′ of X.

Then there exist open sets K0 ⊆ K, X ′0 ⊆ X ′ both containing zero and a Ck-map

g : K0 → X ′0 such that g(0) = 0 and

F−1(0) ∩ (K0 ×X ′0) = {(x, g(x)) |x ∈ K0}.

Theorem 3.2.6. Let (X, g,Φ) be a Spin(7)-manifold and let Y be a compact Cayley

submanifold of X. Let D denote the first order elliptic operator defined in (3.2.6).

Then there exist a smooth manifold K0, which is an open neighbourhood of 0 in Ker D,
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and a smooth map g2 : K0 → Ker D∗ with g(0) = 0 so that an open neighbourhood of

Y in the moduli space of Cayley deformations of Y in X is homeomorphic to an open

neighbourhood of 0 in Ker g2.

Moreover, the expected dimension of the moduli space of Cayley deformations of Y in

X is given by

ind D := dim Ker D − dim Ker D∗,

where

D∗ : C∞(E)→ C∞(νX(Y )),

is the formal adjoint of D. If Ker D∗ = {0} then the moduli space of Cayley deforma-

tions of Y in X is a smooth manifold near Y of dimension

dim Ker D.

Proof. By Proposition 3.2.2 we know that the moduli space of Cayley deformations of

Y in X is isomorphic near Y to the kernel of

F : C∞(V )→ C∞(E),

v 7→ π(∗Y exp∗v(τ |Yv)),

where V ⊆ νX(Y ) is the subset given in the tubular neighbourhood theorem 3.2.1,

Yv := expv(Y ) π : Λ2
7|Y → E is the projection map of the splitting given in (3.2.2)

and τ ∈ C∞(Λ4 ⊗ Λ2
7) is the four-form defined in Proposition 1.2.9. By Lemma 3.2.4,

without changing the kernel, F extends to a smooth map

Lpk+1(V )→ Lpk(E),

for any 1 < p <∞ and k ∈ N and the linearisation of F at zero is the elliptic operator

D defined in Equation (3.2.6), which extends by density to a smooth map

D : Lpk+1(νX(Y ))→ Lpk(E). (3.2.13)
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Since Y is compact and (3.2.13) is elliptic, the map (3.2.13) is Fredholm, and therefore

(3.2.13) has finite-dimensional kernel and cokernel, and closed image. As a conse-

quence, we can write

Lpk+1(νX(Y )) = K ′ ⊕X ′,

where K ′ is the kernel of D and X ′ is closed, and

Lpk(E) = D(Lpk+1(νX(Y )))⊕O,

where O is a finite-dimensional space that we’ll call the obstruction space, and

O ∼= Lpk(E)/D(Lpk+1(νX(Y ))) =: Coker D.

Notice that if the obstruction space vanishes, i.e., O = {0}, then it follows immediately

from the implicit function theorem 3.2.5 that the moduli space of Cayley deformations

of Y is a smooth manifold near Y of dimension dim Ker D. However, the obstruction

space is nonempty in general, and so D is not surjective, thus we are not able to apply

the implicit function theorem 3.2.5 to F . Instead define

F : Lpk+1(V )×O → Lpk(E),

(v, w) 7→ F (v) + w.

We see that

dF|(0,0)(v, w) = Dv + w,

which surjects, and therefore we may apply the implicit function theorem 3.2.5 to F .

Denoting the kernel of dF|(0,0) by K = K ′ × {0}, we can write

Lpk+1(V )×O = K ⊕ (X ′ ×O).

The implicit function theorem 3.2.5 gives us open sets K0 ⊆ K, X ′0 ⊆ X ′ and O0 ⊆ O

and a smooth map g = (g1, g2) : K0 → X ′0 ×O0 such that

F−1(0) ∩ (K0 ×X ′0 ×O0) = {(x, g1(x), g2(x)) |x ∈ K0}.
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Then for x ∈ K0 we have that

F(x, g1(x), g2(x)) = F (x, g1(x)) + g2(x) = 0.

Therefore we can identify the kernel of F with the kernel of the map g2 : K0 → O0.

These spaces are finite-dimensional since D is Fredholm. By Sard’s theorem, we may

deduce that the expected dimension of the kernel of g2 is equal to the difference of the

dimensions of K0 and O0, and therefore the expected dimension of the moduli space

of Cayley deformations of Y in X is

dim Ker D − dim Coker D,

where D is considered as a map Lpk+1(V ) → Lpk(E). We have that the cokernel D

is isomorphic to the kernel of the adjoint to D, D∗, since Y is compact. Elliptic

regularity tells us that the kernels of D and D∗ acting on Lpk+1(νX(Y )) and (Lpk(E))∗

for any 1 < p <∞ and k ∈ N are exactly equal to the kernels of D and D∗ acting on

C∞(νX(Y )) and C∞(E) respectively.

3.3 Cayley deformations of a compact complex sur-

face

In Section 3.2 we saw that the moduli space of Cayley deformations of a compact

Cayley submanifold Y inside a Spin(7)-manifold (X, g,Φ) can be identified with the

kernel of a first order nonlinear partial differential operator

F : C∞(V )→ C∞(E),

where V is an open subset of the normal bundle of Y in X and E is a rank four

subbundle of Λ2
7|Y . The operator F linearises at zero to the elliptic operator

D : C∞(νX(Y ))→ C∞(E),

v 7→
4∑
i=1

π7(ei ∧ (∇⊥eiv)[), (3.3.1)
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where {e1, . . . , e4} is an orthonormal frame for TY with dual frame {e1, . . . , e4}, ∇⊥ is

the connection on νX(Y ) induced by the Levi-Civita connection of M , π7 : Λ2X → Λ2
7

is the projection map and [ : νX(Y )→ ν∗X(Y ) is the musical isomorphism.

As remarked at the beginning of Section 3.2, McLean showed that under the identifi-

cations of νX(Y )⊗C and E⊗C with bundles of positive and negative twisted spinors

respectively, (3.3.1) is the twisted Dirac operator. While we avoid the use of spin

structures in our treatment of the Cayley deformation problem in this chapter, the

special form that a spin structure on a Kähler manifold takes provides motivation for

the vector bundle isomorphisms that we construct in Section 3.3.1.

As we have seen, if M is a four-dimensional Calabi–Yau manifold with two-dimensional

compact complex submanifold N , we can view N as a Cayley submanifold of M .

Recall that on a two-dimensional Kähler manifold N with a fixed spin structure, we

can identify [13, pg 82]

S+
∼= (Λ0,0N ⊕ Λ0,2N)⊗ Sk,

S− ∼= Λ0,1N ⊗ Sk,

where Sk is a holomorphic line bundle satisfying Sk⊗Sk = Λ2,0N , and in this case the

Dirac operator is given by

√
2(∂̄ + ∂̄∗).

In Section 3.3.1, we will explicitly construct isomorphisms between νM(N) ⊗ C and

E ⊗ C with bundles of twisted (0, 0)- and (0, 2)-forms and (0, 1)-forms respectively.

In Section 3.3.2, we will show that under these identifications, (3.3.1) becomes the

operator ∂̄ + ∂̄∗. Combining this with the analysis of Section 3.1.1 will allow us to

prove Theorem 3.3.4, where we identify the expected dimension of the moduli space of

Cayley deformations of N in M with the index of ∂̄ + ∂̄∗, and further Theorem 3.3.5

which gives an expression for the expected dimension of this moduli space in terms of

topological invariants of N .
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3.3.1 Identifications of vector bundles

In this section we construct isomorphisms of vector bundles on a complex surface N

in a Calabi–Yau four-fold M .

Proposition 3.3.1. Let N be a two-dimensional complex submanifold of a Calabi–Yau

four-fold M . Then

νM(N)⊗ C ∼= ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N), (3.3.2)

where νM(N) denotes the normal bundle of N in M and ν1,0
M (N) denotes the holomor-

phic normal bundle of N in M .

Proof. Recall that on a complex submanifold we have the following splitting of the

complexified normal bundle into holomorphic and antiholomorphic parts

νM(N)⊗ C ∼= ν1,0
M (N)⊕ ν0,1

M (N).

Therefore to prove the proposition, it suffices to show that

ν0,1
M (N) ∼= Λ0,2N ⊗ ν1,0

M (N).

The adjunction formula for complex submanifolds [17, Prop 2.2.17] says that

Λ2,0N ∼= Λ4,0M |N ⊗ Λ2ν1,0
M (N), (3.3.3)

however, since M is Calabi–Yau, it has trivial canonical bundle. Tensoring both sides

of Equation (3.3.3) with ν∗1,0M (N), we have that

Λ2,0N ⊗ ν∗1,0M (N) ∼= ν1,0
M (N).

The musical isomorphism ] : ν∗1,0M (N)→ ν0,1
M (N) yields that

Λ2,0N ⊗ ν0,1
M (N) ∼= ν1,0

M (N),

and finally taking the complex conjugate we conclude that

ν0,1
M (N) ∼= Λ0,2N ⊗ ν1,0

M (N).
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Remark. In fact, we can even write down explicitly the isomorphism

ν0,1
M (N) ∼= Λ0,2N ⊗ ν1,0

M (N).

Let Ω be a holomorphic volume form on M . Then the isomorphism is given by

ν0,1
M (N)→ Λ0,2N ⊗ ν1,0

M (N),

v 7→ 1

4
(vyΩ)],

where ] denotes the musical isomorphism ν∗0,1(N)→ ν1,0(N). Its inverse is given by

Λ0,2N ⊗ ν1,0
M (N)→ ν0,1

M (N),

α⊗ v 7→ − [∗N(α ∧ (vyΩ))]] ,

where ∗N is the real Hodge star on N and ] : ν∗1,0M (N) → ν0,1
M (N) is the musical

isomorphism.

Proposition 3.3.2. Let N be a two-dimensional complex submanifold of a Calabi–Yau

four-fold M . Denote by E the rank four vector bundle in the splitting

Λ2
7|N = Λ2

+N ⊕ E,

where Λ2
7 was defined in 1.2.5. Then we have that

E ⊗ C ∼= Λ0,1N ⊗ ν1,0
M (N), (3.3.4)

where ν1,0
M (N) denotes the holomorphic normal bundle of N in M .

Proof. Since we have the musical isomorphism [ : ν1,0
M (N) → ν∗0,1M (N), it suffices to

show that

E ⊗ C ∼= Λ0,1N ⊗ ν∗0,1M (N).

To see this we will show that the projection map

π7 : Λ2M → Λ2
7,

given by

π7(v ∧ w) =
1

2

[
v ∧ w + Φ(v], w], · , · )

]
,
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is a bijection

Λ0,1N ⊗ ν∗0,1M (N)→ E ⊗ C.

Let ω be the Ricci-flat Kähler metric on M and choose a holomorphic volume form Ω

so that the Cayley form on M is given by

Φ =
1

2
ω ∧ ω + Re Ω.

Let v ⊗ w ∈ Λ0,1N ⊗ ν∗0,1M (N). Then viewing this as a two-form on M , we have that

π7(v ∧ w) =
1

2

[
v ∧ w +

1

2
ω ∧ ω(v], w], · , · ) +

1

2
(Ω + Ω)(v], w], · , · )

]
.

First note that v] and w] are of type (1, 0), and so straight away we can eliminate the

Ω term. Further, since

ω(a, b) = g(Ja, b),

for all vector fields a and b on M , we see that

1

2
ω ∧ ω(v], w], · , · ) =

1

2

[
ω(v], w]) ∧ ω + ω ∧ ω(v], w])

−ω(v], · ) ∧ ω(w], · ) + ω(w], · ) ∧ ω(v], · )
]

=
1

2

[
−g(Jv], · ) ∧ g(Jw], · ) + g(Jw], · ) ∧ g(Jv], · )

]
=

1

2

[
g(v], · ) ∧ g(w], · )− g(w], · ) ∧ g(v], · )

]
=

1

2
[v ∧ w − w ∧ v]

= v ∧ w,

since v] and w] are of type (1, 0) and using the definition of the musical isomorphism.

So we have shown that

π7(v ∧ w) = v ∧ w +
1

4
Ω(v], w], · , · ),

where we notice that the second term lies in Λ1,0N ⊗ ν∗1,0M (N) when restricted to N .

It can be shown similarly that for v ∈ Λ1,0N and w ∈ ν∗1,0M (N) that

π7(v ∧ w) = v ∧ w +
1

4
Ω(v], w], · , · ),
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and so we see that if σ ∈ Λ1,0N ⊗ ν∗1,0M (N) or Λ0,1N ⊗ ν∗0,1M (N) then π7(σ) ∈ Λ1,0N ⊗

ν∗1,0M (N)⊕Λ0,1N⊗ν∗0,1M (N). In particular, π7(Λ1,0N⊗ν∗1,0M (N)) = π7(Λ0,1N⊗ν∗0,1M (N)).

A similar calculation yields that for all σ1 ∈ Λ1,0N ⊗ ν∗0,1M (N), σ2 ∈ Λ0,1N ⊗ ν∗1,0M (N)

π7(σ1) = 0 = π7(σ2),

and therefore to check that E ⊗ C = π7(Λ0,1N ⊗ ν∗0,1M (N)) it suffices to check that

π7(Λ0,2N) + π7(Λ2,0N) + π7(Λ1,1N) = Λ2
+N . But since if v ∧ w is a unit element of

Λ0,2N,Λ2,0N or Λ1,1N then

π7(v ∧ w)|N =
1

2

[
v ∧ w +

1

2
ω ∧ ω(v], w], · , · )|N

]
=

1

2

[
v ∧ w + volN(v], w], · , · )

]
=

1

2
[v ∧ w + ∗N(v ∧ w)] ,

this is clear. Therefore E ⊗C = π7(Λ0,1N ⊗ ν∗0,1M (N)). The inverse map to π7 is given

by the projection map

π0,1 : E ⊗ C→ Λ0,1N ⊗ ν∗0,1M (N).

3.3.2 The Cayley operator on a complex submanifold

Now that we have made our vector bundle identifications we can identify the moduli

space of Cayley deformations of the complex surface N in the Calabi–Yau manifold M

with the kernel of a partial differential operator acting between vector bundles whose

linearisation takes a the form of a familiar first order elliptic operator.

Proposition 3.3.3. Let N be a two-dimensional compact complex submanifold of a

Calabi–Yau four-fold M . Then the moduli space of Cayley deformations of N in M

can be identified with the kernel of the partial differential operator

F cx : C∞(U)→ C∞(Λ0,1N ⊗ ν1,0
M (N)),
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where U ⊆ ν1,0
M (N) ⊕ Λ0,2N ⊗ ν1,0

M (N) is the image of V ⊗ C from the tubular neigh-

bourhood theorem 3.2.1 under the isomorphism given in Proposition 3.3.1, and F cx is

defined so that the following diagram commutes

C∞(U) C∞(Λ0,1N ⊗ ν1,0
M (N))

C∞(V ⊗ C) C∞(E ⊗ C)

F cx

F

where F is the operator defined in Proposition 3.2.2 and we use the isomorphisms

given in Propositions 3.3.1 and 3.3.2.

Moreover, the linearisation of F cx at zero is given by the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)). (3.3.5)

Proof. By Proposition 3.2.2 the moduli space of Cayley deformations of N in M can

be identified with the kernel of the map F , which by definition of F cx has the same

kernel as F cx.

Recall that the linearisation of F is given by the operator

Dv =
4∑
i=1

π7(ei ∧ (∇⊥eiv)[),

where {e1, . . . , e4} is an orthonormal frame for TN with dual frame {e1, . . . , e4} for

T ∗N , ∇⊥ is the connection on νM(N) induced by the Levi-Civita connection of M ,

π7 is the projection of two-forms onto Λ2
7 and [ : νM(N) → ν∗M(N) is the musical

isomorphism. We will use this to find the linearisation of F cx.

Write v ∈ C∞(νM(N)⊗C) as v1⊕v2, where v1 ∈ C∞(ν1,0
M (N)) and v2 ∈ C∞(ν0,1

M (N)).

If we can show that

∂̄v1 + ∂̄∗
1

4
(v2yΩ) = π0,1 ◦D(v1 ⊕ v2),

where π0,1 : E⊗C→ Λ0,1N ⊗ ν∗0,1M (N) is the projection map as we saw in Proposition

3.3.2, then we are done by definition of F cx and the isomorphisms given in Propositions

3.3.1 and 3.3.2.
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We will first show that

∂̄v1 = π0,1 ◦Dv1.

Since ei ∧ ∇⊥eiv1 is a one-form with values in the bundle ν1,0(N), we may split it into

the sum of a (1, 0)- and (0, 1)-form. We have that

∑
ei ∧∇⊥eiv1 = ∂v1 + ∂̄v1,

where ∂v1 ∈ C∞(Λ1,0N ⊗ ν1,0
M (N)) and ∂̄v1 ∈ C∞(Λ0,1N ⊗ ν1,0

M (N)). (We use this

notation because this is exactly the definition of ∂̄ on ν1,0
M (N) since the Levi-Civita

connection on a Kähler manifold is compatible with the holomorphic structure [17,

Prop 4.A.8].) We saw in Proposition 3.3.2 that π0,1 ◦ π7 = id on forms in Λ0,1N ⊗

ν∗0,1M (N), and so

π0,1 ◦ π7(∂̄v1) = ∂̄v1,

where we have implicitly used the musical isomorphisms where appropriate. Therefore

it remains to show that

π0,1 ◦ π7(∂v1) = 0.

If w1 ⊗w2 ∈ Λ1,0N ⊗ ν∗0,1M (N), then for ω the Ricci-flat Kähler form on M and Ω the

holomorphic volume form on M so that the Cayley form on M is given by

Φ =
1

2
ω ∧ ω + Re Ω,

we have that

π7(w1 ∧ w2) =
1

2

[
w1 ∧ w2 +

1

2
ω ∧ ω(w]1, w

]
2, ·, ·) +

1

2
Ω(w]1, w

]
2, ·, ·) +

1

2
Ω(w]1, w

]
2, ·, ·)

]
.

Now since w]1 is of type (0, 1), whereas w]2 is of type (1, 0), we have that

π7(w1 ∧ w2) =
1

2

[
w1 ∧ w2 +

1

2
ω ∧ ω(w]1, w

]
2 · , · )

]
.

However, from the relationship between the metric and the Kähler form, we find that

1

2
ω ∧ ω(w]1, w

]
2, · , · ) = −w1 ∧ w2,
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and so we are done.

We will now show that for v2 ∈ ν0,1
M (N),

∂̄∗
1

4
(v2yΩ) = π0,1 ◦Dv2.

We first find that

∂̄∗(v2yΩ) = −
4∑
i=1

eiy∇ei(v2yΩ) =
4∑
i=1

Ω(ei,∇⊥eiv2, · , · ),

for an orthonormal frame {e1, ..., e4} of TN , since Ω and therefore Ω is parallel.

We compute that

Dv2 =
4∑
i=1

π7(ei ∧ (∇⊥eiv2)[),

=
1

2

4∑
i=1

[
ei ∧ (∇⊥eiv2)[ +

1

2
ω ∧ ω(ei,∇⊥eiv2, · , · ) +

1

2
(Ω + Ω)(ei,∇⊥eiv2, · , · )

]
.

(3.3.6)

Since N and M are Kähler, the Levi-Civita connection is compatible with the complex

structure. So we have that ∇⊥eiv2 ∈ ν0,1
M (N) which allows us to eliminate the term in

Equation (3.3.6) involving Ω. Projecting Equation (3.3.6) onto Λ0,1N⊗ν∗0,1M (N) leaves

us with only one term, however, and so we have that

π0,1 ◦Dv2 =
1

4

4∑
i=1

Ω(ei,∇⊥eiv2, · , · ),

which proves the proposition.

Now that we have linearised F cx, we may use Theorem 3.2.6 to write the expected

dimension of the moduli space of Cayley deformations of a compact complex surface

inside a Calabi–Yau four-fold in terms of the index of ∂̄ + ∂̄∗.

Theorem 3.3.4. Let N be a two-dimensional compact complex submanifold of a

Calabi–Yau four-fold M . Then the expected (real) dimension of the moduli space of

Cayley deformations of N in M is equal to the (complex) index of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)). (3.3.7)
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Moreover, if the kernel of

∂̄ + ∂̄∗ : C∞(Λ0,1N ⊗ ν1,0
M (N))→ C∞(ν1,0

M (N)⊕ Λ0,2N ⊗ ν1,0
M (N)),

is {0} then the moduli space of Cayley deformations of N in M is a smooth manifold

near N of dimension

dimCKer ∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)).

Proof. This result follows from applying Theorem 3.2.6 to N and applying Proposition

3.3.3 to identify the operator (3.3.1) with the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)),

using the isomorphisms in Proposition 3.3.1 and Proposition 3.3.2, and moreover the

kernel and cokernel of (3.3.7) must be the complexification of the kernel and kernel

of (3.3.1). Therefore the index of (3.3.1) and the (complex) index of (3.3.7) are the

same (i.e., taking the complex dimension instead of the real dimension). Therefore the

expected dimension of the moduli space of Cayley deformations of N in M is given

by the index of (3.3.7) as claimed.

Remark. Notice that we could have proved Theorem 3.3.4 by repeating the proof of

Theorem 3.2.6 for the operator F cx.

3.3.3 Index theory

Now that we have Theorem 3.3.4 on the expected dimension of the moduli space of

Cayley deformations of a compact complex surface inside a Calabi–Yau four-fold we

would like to be able to calculate this dimension. We will do this by applying the

Hirzebruch–Riemann–Roch theorem, which we can think of as an application of the

Atiyah–Singer index theorem to the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2M ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)),
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to find an expression for the expected dimension of this moduli space in terms of

topological invariants of N .

Theorem 3.3.5. Let N be a compact complex surface inside a four-dimensional

Calabi–Yau manifold M . Consider the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2M ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)).

Then the index of this operator is given by

ind ∂̄ + ∂̄∗ =
1

2
sign(N) +

1

2
χ(N)− [N ] · [N ], (3.3.8)

where sign(N) is the signature of N , χ(N) is the Euler characteristic of N and [N ]·[N ]

is the self-intersection number of N .

Proof. Since N is compact, we can identify the kernel of ∂̄ + ∂̄∗ and the kernel of its

adjoint with Dolbeault cohomology groups. That is,

dimCKer (∂̄ + ∂̄∗) = dimCH
0,0

∂̄
(N, ν1,0

M (N)) + dimCH
0,2

∂̄
(N, ν1,0

M (N)),

dimCKer (∂̄ + ∂̄∗)∗ = dimCH
0,1

∂̄
(N, ν1,0

M (N)).

By Dolbeault’s theorem, we can then identify the index of the operator with the

dimensions of certain sheaf cohomology groups. We have that

ind ∂̄ + ∂̄∗ = dimCH
0(N, ν1,0

M (N))− dimCH
1(N, ν1,0

M (N)) + dimCH
2(N, ν1,0

M (N)).

Then by the Hirzebruch–Riemann–Roch theorem [17, Thm 5.1.1], we have that

ind ∂̄ + ∂̄∗ =

∫
N

ch(ν1,0
M (N))td(N),

where ch(ν1,0
M (N)) is the Chern character of ν1,0

M (N) and td(N) is the Todd class of N .

We calculate that∫
N

ch(ν1,0
M (N))td(N) =

∫
N

1

6
(c2

1(N) + c2(N)) +
1

2
c1(ν1,0

M (N))c1(N)

+
1

2
(c2

1(ν1,0
M (N))− 2c2(ν1,0

M (N))).
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Since M is a Calabi–Yau manifold, c1(M) = 0, and therefore

0 = c1(T 1,0M |N) = c1(T 1,0N ⊕ ν1,0
M (N)) = c1(T 1,0N) + c1(ν1,0

M (N)),

which tells us that∫
N

ch(ν1,0
M (N))td(N) =

1

6
(c2

1(N) + c2(N))− c2(ν1,0
M (N))

=
1

6
(c2

1(N)− 2c2(N)) +
1

2
c2(N)− c2(ν1,0

M (N)).

Finally, since ci(E) = (−1)ici(E),

c2(TN ⊗ C) = c2(T 1,0N ⊕ T 0,1N) = c2(N) + c1(N)c1(T 0,1N) + c2(T 0,1N)

= 2c2(N)− c1(N)2,

and so by definition of the Pontryagin class p1(N), we see that∫
N

ch(ν1,0
M (N))td(N) =

1

6
p1(N) +

1

2
c2(N)− c2(ν1,0

M (N)),

and therefore applying the Hirzebruch signature theorem [17, Cor 5.1.4] we have that

ind ∂̄ + ∂̄∗ =
1

2
sign(N) +

1

2
χ(N)− [N ] · [N ],

as required.

3.4 Complex deformations of a compact complex

surface

In this section, we are interested in finding out when a Cayley deformation of a compact

complex surface N in a Calabi–Yau four-fold M is a complex deformation.

If N ′ is a Cayley deformation of N , we see that

volN ′ =
1

2
ω ∧ ω|N ′ + Re Ω|N ′ ,
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where ω is the Ricci-flat Kähler form and Ω is the holomorphic volume form of M . It

is easy to see that N ′ is a complex submanifold of M if, and only if,

Re Ω|N ′ ≡ 0.

We can actually go further than this, however, and find a differential form on M that

vanishes exactly when restricted to a two-dimensional complex submanifold without

thinking about Cayley deformations at all. In Section 3.4.1 we will find such a form,

which we will then use to construct a partial differential operator G on a compact

complex surface N in a Calabi–Yau four-fold M whose kernel we can identify with the

moduli space of complex deformations of N in M .

In Section 3.4.2 we will study properties of the operator G. In particular, we will

compute its linearisation in Proposition 3.4.4, which will allow us to deduce that

infinitesimal Cayley and complex deformations of N are the same.

Our main result will be Theorem 3.4.7, which gives a local argument to show that

the complex deformation problem for N is unobstructed. We may deduce from this

that the Cayley deformation problem for N is unobstructed also. From Theorem 3.4.7

we deduce that complex and Cayley deformations of a compact complex surface in a

Calabi–Yau four-fold are the same, recovering Proposition 1.2.6 directly for complex

submanifolds.

3.4.1 A form that vanishes on complex surfaces

Let M be a four-dimensional Calabi–Yau manifold with Ricci-flat Kähler form ω and

holomorphic volume form Ω so that

Φ =
1

2
ω ∧ ω + Re Ω,

is the Cayley form on M . Recall the triple cross product on M given by

κ(u, v, w) = Φ(u, v, w, ·)] =
1

2
ω ∧ ω(u, v, w, ·)] + Re Ω(u, v, w, ·)],
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for any vector fields u, v, w on M , where ] : T ∗M → TM is the musical isomorphism.

In particular, when M = C4, we can see that for any three linearly independent vectors

v1, v2, v3 ∈ C4 then

span{v1, v2, v3, κ(v1, v2, v3)},

is a Cayley subspace of C4. Since the triple cross product is nondegenerate, to guar-

antee that this subspace is, in fact a complex subspace of C4 we must ask that

Re Ω(v1, v2, v3, ·) = 0.

From this we can see that a Cayley subspace of C4 is complex if, and only if, the

one-form valued three-form defined by

σ(u, v, w) = Re Ω(u, v, w, ·),

vanishes on the Cayley subspace.

It is quite remarkable then that we can prove in Proposition 3.4.2 that σ|N ≡ 0 if, and

only if, N is a two-dimensional complex submanifold of M , that is, we do not require

that N is Cayley before we check this condition. We will first require a result which

follows from a lemma of Harvey and Lawson [15, II.6 Lem 6.13].

Lemma 3.4.1. Let V be a four-dimensional oriented linear subspace of C4. Then there

exist a unitary basis e1, Je1, . . . , e4, Je4 for C4 and angles 0 ≤ θ1 ≤ π/2, θ1 ≤ θ2 ≤ π

such that

V = span{e1, Je1 cos θ1 + e2 sin θ1, e3, Je3 cos θ2 + e4 sin θ2}.

Given this result, we can prove the following proposition.

Proposition 3.4.2. Let X be an oriented real four-dimensional submanifold of a

Calabi–Yau four-fold M . Then X is a complex submanifold of M if, and only if

σ(u, v, w) ≡ 0,

for all vector fields u, v, w on X, where

σ(u, v, w) := Re Ω(u, v, w, ·), (3.4.1)

where Ω is the holomorphic volume form of M .
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Proof. Recall that for u, v, w vector fields on X we have that

σ(u, v, w) := Re Ω(u, v, w, ·),

where Ω is a holomorphic volume form on M . If X is complex, then by the adjunction

formula [17, Prop 2.2.17],

KM |X ∼= KX ⊗ Λ2ν∗1,0M (X),

where KM denotes the canonical bundle of M . Since Ω is a nowhere vanishing section

of KM , it is each to see that for any three vector fields u, v, w on X

Ω(u, v, w, ·) = Ω(u, v, w, ·) = 0,

and so,

Re Ω(u, v, w, ·) = 0.

It remains to show that σ|X ≡ 0 implies that X is a complex manifold. We show the

contrapositive, that is, if X is not complex, then we can find vector fields u, v, w on

X so that σ(u, v, w) 6= 0. It suffices to show that for an arbitrary x ∈ X, we can find

nonzero v1, v2, v3 ∈ TxX so that σx(v1, v2, v3) 6= 0.

Identifying (TxM,ωx) with C4 with Euclidean Kähler form and holomorphic volume

form as defined in (1.2.3), we can view TxX as an oriented four-dimensional linear

subspace V of C4. Apply Lemma 3.4.1 to choose a unitary basis {e1, Je1, . . . , e4, Je4}

for C4 so that for some 0 ≤ θ1 ≤ π/2, θ1 ≤ θ2 ≤ π

V = span{e1, Je1 cos θ1 + e2 sin θ1, e3, Je3 cos θ2 + e4 sin θ2}.

Since V is not a complex subspace of C4, suppose without loss of generality that

0 < θ2 < π. The holomorphic volume form on C4 takes the form

Ω = (e1 − iJe1) ∧ (e2 − iJe2) ∧ (e3 − iJe3) ∧ (e4 − iJe4),



3.4. COMPLEX DEFORMATIONS OF A COMPACT COMPLEX SURFACE 79

where ei = g(ei, ·). Notice that Je1 = −g(Je1, ·). Then we have that

σ(e1, e3, Je3 cos θ2 + e4 sin θ2) =
1

2
(Ω + Ω)(e1, e3, Je3 cos θ2 + e4 sin θ2, ·)

=
1

2
(sin θ2(e2 − iJe2) + sin θ2(e2 + iJe2))

= sin θ2 e
2,

which doesn’t vanish since we assumed that 0 < θ2 < π.

Remark. Given this result, it is natural to wonder whether four-dimensional special

Lagrangian submanifolds of a Calabi–Yau four-fold M (calibrated by Re Ω, where Ω

is a holomorphic volume form on M) could be characterised by the vanishing of the

T ∗M valued three-form σ′ defined by

σ′(u, v, w) :=
1

2
ω ∧ ω(u, v, w, ·),

for u, v, w vector fields on M . However, unlike complex submanifolds, we cannot

define special Lagrangian submanifolds using only the complex structure on M . We

can, however, define Lagrangian submanifolds using only the complex structure, and

therefore a similar argument to Proposition 3.4.2 will in fact show that σ′ vanishing

on a four-dimensional submanifold X of M is equivalent to X being Lagrangian. A

local argument similar to Lemma 3.4.6 below shows that this definition is equivalent

to the standard definition of Lagrangian which is that ω must vanish on X.

In the style of Proposition 3.2.2 we can now identify the moduli space of complex

deformations of a compact complex surface in a Calabi–Yau four-fold with the kernel

of a partial differential operator.

Proposition 3.4.3. Let N be a compact complex surface inside a four-dimensional

Calabi–Yau manifold M . Let V ⊆ νM(N) be the subset defined in the tubular neigh-

bourhood theorem 3.2.1, and for v ∈ C∞(V ) define Nv := expv(N). Then the moduli

space of complex deformations of N is isomorphic near N to the kernel of

G : C∞(V ⊗ C)→ C∞(Λ1N ⊗ T ∗M |N ⊗ C),

v 7→ ∗N exp∗v σ|Nv , (3.4.2)
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where σ was defined in Proposition 3.4.2.

Proof. The identification of the moduli space with this operator follows immediately

from Proposition 3.4.2.

3.4.2 Properties of the operator G

In this section we will look at the operator G defined in Proposition 3.4.2 in detail. We

will compute the linear part of G in Proposition 3.4.4, which will allow us to compare

infinitesimal Cayley deformations to infinitesimal complex deformations of a compact

complex surface, before using a local argument in Lemma 3.4.6 to show that the kernel

of G is equal to the kernel of its linear part.

Proposition 3.4.4. Let N be a compact complex surface in a Calabi–Yau four-fold

M . Let G be the partial differential operator defined in Proposition 3.4.2. Then the

linearisation of G at zero is equal to the operator

v 7→ −∂∗(vyΩ)− ∂̄∗(vyΩ),

where v ∈ C∞(νM(N) ⊗ C). Therefore v is an infinitesimal complex deformation of

N if, and only if,

∂∗(vyΩ) = 0 = ∂̄∗(vyΩ)

Moreover, we have that, if v = v1 ⊕ v2 where v1 ∈ ν1,0
M (N) and v2 ∈ ν0,1

M (N)

∂∗(v1yΩ) = 0 ⇐⇒ ∂̄v1 = 0.

Remark. We can see from this proposition that if v ∈ C∞(ν1,0
M (N)⊕Λ0,2N⊗ν1,0

M (N))

is an infinitesimal Cayley deformation of N , that is,

(∂̄ + ∂̄∗)v = 0,

then for v to be an infinitesimal complex deformation of N we must have that

∂̄v = ∂̄∗v = 0.



3.4. COMPLEX DEFORMATIONS OF A COMPACT COMPLEX SURFACE 81

Since N is compact, this is already true, and so we see that infinitesimal complex and

Cayley deformations of a compact complex surface inside a Calabi–Yau four-fold are

the same.

Proof. By definition, we have that

dG|0(V ) =
d

dt
G(tv)|t=0 =

d

dt
∗N exp∗tv(σ|Ntv) = ∗N(Lvσ).

Notice that if {ei, ej, ek, el} is an orthonormal frame for TN so that volN(ei, ej, ek, el) =

±1 then

±(∗NLvσ)(el) = (Lvσ)(ei, ej, ek).

Recalling that σ takes values in T ∗M , we can compute using a formula such as [20,

Eqn (4.3.26)] that for any vector field u on M , we have that

(Lvσ)(ei, ej, ek)(u) = (∇vσ)(ei, ej, ek)(u) + σ(∇⊥eiv, ej, ek)(u)

+ σ(ei,∇⊥ejv, ek)(u) + σ(ei, ej,∇⊥ekv)(u) + σ(ei, ej, ek)(∇uv),

where we write ∇epv = ∇T
epv+∇⊥epv for ∇T

epv ∈ TN and ∇⊥epv ∈ νM(N), and use that

σ vanishes when evaluated on three tangent vectors to N . We see immediately that

since σ is defined using the parallel form Ω that the first term on the right hand side

vanishes, while the last term on the right hand side vanishes since ei, ej and ek are

tangent to N .

Without loss of generality, suppose that Jei = ej. Then since ei∧ ej ∈ Λ1,1N , we have

that Ω(ei, ej, · , · ) = Ω(ei, ej, · , · ) = 0, since by the adjunction formula,

(Ω + Ω)|N ∈ Λ2,0N ⊗ Λ2ν∗1,0M (N)⊕ Λ0,2N ⊗ Λ2ν∗0,1M (N).

So we may deduce that

(Lvσ)(ei, ej, ek) = σ(∇⊥eiv, ej, ek) + σ(ei,∇⊥ejv, ek)

=
1

2
σ((∇⊥ei + i∇⊥ej)v, ej + iei, ek) +

1

2
σ((∇⊥ei − i∇

⊥
ej

)v, ej − iei, ek)

=
1

4
Ω((∇⊥ei + i∇⊥ej)v, ej + iei, ek, ·) +

1

4
Ω((∇⊥ei − i∇

⊥
ej

)v, ej − iei, ek, ·),



82 CHAPTER 3. COMPACT DEFORMATIONS

where we use the definition of σ and the fact that ej + iei is of type (1, 0) and ej − iei
is of type (0, 1). Let us examine the term

1

4
Ω((∇⊥ei + i∇⊥ej)v, ej + iei, ek, · ).

This is equal to

1

4
Ω((∇⊥ei + i∇⊥ej)v, ej + iei, ek, · )−

1

4
Ω((∇⊥ei − i∇

⊥
ej

)v, ej − iei, ek, · ),

since ej − iei is of type (0, 1) and so we have added zero. By linearity, this is equal to

i

2
Ω(∇⊥eiv, ei, ek, · ) +

i

2
Ω(∇⊥ejv, ej, ek, · ).

A similar computation for the Ω term leads us to deduce that

±ely ∗N Lvσ = (Lvσ)(ei, ej, ek) =
i

2
Ω(∇⊥eiv, ei, ek, · ) (3.4.3)

+
i

2
Ω(∇⊥ejv, ej, ek, · )−

i

2
Ω(∇⊥eiv, ei, ek, · )−

i

2
Ω(∇⊥ejv, ej, ek, · ).

Suppose now that el = Jek. Then we select plus in Equation (3.4.3). We have that

ek − iel is of type (1, 0), while ek + iel is of type (0, 1). Therefore

(ek + iel)yΩ = 0,

(ek − iel)yΩ = 0.

Rearranging these equations, we see that

ekyΩ = −ielyΩ,

ekyΩ = ielyΩ.

Using these identities, Equation (3.4.3) becomes

ely ∗N Lvσ = (Lvσ)(ei, ej, ek) =
1

2
Ω(∇⊥eiv, ei, el, · ) (3.4.4)

+
1

2
Ω(∇⊥ejv, ej, el, · ) +

1

2
Ω(∇⊥eiv, ei, el, · ) +

1

2
Ω(∇⊥ejv, ej, el, · ).
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If Jek = −el, a similar calculation yields the same expression. Therefore summing

over terms of the form (3.4.4), we find that

∗NLvσ =
4∑
i=1

Ω(∇⊥eiv, ei, · , · ) + Ω(∇⊥eiv, ei, · , · )

=
4∑
i=1

eiy ((∇⊥eiv)yΩ) + eiy ((∇⊥eiv)yΩ)

=
4∑
i=1

eiy∇ei(vyΩ) + eiy∇ei(vyΩ)

= −∂∗(vyΩ)− ∂̄∗(vyΩ).

It remains to show that if v1 ∈ ν1,0
M (N) then

∂̄v1 = 0 ⇐⇒ ∂∗(v1yΩ) = 0.

Let {e1, e2, e3, e4} be a frame for TN and suppose that Je1 = e3 and Je2 = e4. Then

we have that

∂̄v1 = 0 ⇐⇒ (e1 − ie3) ∧ (∇⊥e1 + i∇⊥e3)v1 + (e2 − ie4) ∧ (∇⊥e2 + i∇⊥e4)v1 = 0

⇐⇒ (∇⊥e1 + i∇⊥e3)v1 = (∇⊥e2 + i∇⊥e4)v1 = 0

⇐⇒ [(∇⊥e1 + i∇⊥e3)v1]yΩ = [(∇⊥e2 + i∇⊥e4)v1]yΩ = 0

⇐⇒ Ω((∇⊥e1 + i∇⊥e3)v1, e1 − ie3, · , · ) + Ω((∇⊥e2 + i∇⊥e4)v1, e2 − ie4, · , · ) = 0

⇐⇒ 2
4∑
i=1

Ω(∇⊥eiv1, ei, · , · ) = 0

⇐⇒ 2
4∑
i=1

eiy∇ei(v1yΩ) = 0

⇐⇒ −2∂∗(v1yΩ) = 0,

where we have exploited the property that Ω never vanishes, that (∇⊥eiv) is of type

(1, 0) and used similar tricks to the proof of the first part of the proposition.

Similarly to Proposition 3.4.4 we may identify the kernels of the operators ∂̄ and ∂̄∗.

This will be helpful when we compare the results of this chapter to Kodaira’s theorem

3.1.1.
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Corollary 3.4.5. Let N be a complex surface inside a four-dimensional Calabi–Yau

manifold M . Consider the operators

∂̄ : C∞(ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)),

∂̄∗ : C∞(Λ0,2N ⊗ ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)).

Then there is an isomorphism

ν1,0
M (N)→ Λ0,2N ⊗ ν1,0

M (N),

that induces an isomorphism

Ker ∂̄ → Ker ∂̄∗.

Proof. Let Ω be a holomorphic volume form on M . Then the isomorphism

ν1,0
M (N)→ Λ0,2N ⊗ ν1,0

M (N),

is given by

v 7→ (v̄yΩ)],

where ] : ν∗0,1M (N)→ ν1,0
M (N) is the musical isomorphism. It follows from Proposition

3.3.1 that this is an isomorphism. We proved in Proposition 3.4.4 that

∂̄v = 0 ⇐⇒ ∂∗(vyΩ) = 0.

Since

∂̄∗(v̄yΩ) = ∂∗(vyΩ),

the result follows.

The following lemma allows us to see that the kernel of G defined in Proposition 3.4.2

is equal to the kernel of the linear part of G computed in Proposition 3.4.4.

Lemma 3.4.6. Let N be a two-dimensional compact complex submanifold of a Calabi–

Yau four-fold M . Let v ∈ C∞(ν1,0
M (N)⊗ C) satisfy

∂∗(vyΩ) = 0 = ∂̄∗(vyΩ).

Let G be the operator defined in Proposition 3.4.2. Then G(v) = 0.
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Proof. The argument here is similar to the argument of Proposition 3.2.2. We will

write the tangent space to a deformation of N as a graph over the tangent space of

N , identified with a complex subspace of C4 and write down the condition equivalent

to G(v) = 0.

Choose p ∈ N . Then TpM = TpN ⊕ νp(N). Choose an orthonormal basis {e1, . . . , e8}

for TpM with Jei = ei+4 for i = 1, . . . 4 so that

TpN = span{e1, e2, Je1, Je2}.

Let N ′ be a small deformation of N with diffeomorphism f : N → N ′. Then there

is a natural isometry TpM → Tf(p)M preserving the complex structures J and J ′ on

these spaces. Denote by {e′1, . . . , e′8} the orthonormal basis of Tf(p)M where ei maps

to e′i under this isometry, with J ′e′i = e′i+4. Then

Tf(p)N
′ = span{v1, v2, v5, v6},

where without loss of generality since N ′ is a small deformation of N we may take

vj = e′j +
∑

i=3,4,7,8

λjie
′
i,

for λji ∈ R.

We can then evaluate

σf(p)(vi, vj, vk) := Re Ωf(p)(vi, vj, vk, ·) = 0,

where {i, j, k} ⊆ {1, 2, 5, 6}. We have that

Re Ωf(p) = e′1234 − e′1278 + e′1368 − e′1467 − e′2358 + e′2457 − e′3456 + e′5678,

where e′j(e′k) = δjk and e′ijkl := e′i ∧ e′j ∧ e′k ∧ e′l.

We evaluate σ(vi, vj, vk) = 0 for {i, j, k} = {1, 2, 5}, {1, 2, 6}, {1, 5, 6} and {2, 5, 6}.

Eliminating duplicate equations, we find that the λij must satisfy the following linear
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equations

λ1
3 − λ5

7 = 0,

λ1
4 − λ5

8 = 0,

λ1
7 + λ5

3 = 0,

λ1
8 + λ5

4 = 0,

λ2
3 − λ6

7 = 0,

λ2
4 − λ6

8 = 0,

λ2
7 + λ6

3 = 0,

λ2
8 + λ6

4 = 0,

and the following nonlinear equations

λ1
3λ

5
4 − λ1

4λ
5
3 − λ1

7λ
5
8 + λ1

8λ
5
7 = 0,

λ1
3λ

5
8 − λ1

4λ
5
7 + λ1

7λ
5
4 − λ1

8λ
5
3 = 0,

λ2
3λ

6
4 − λ2

4λ
6
3 − λ2

7λ
6
8 + λ2

8λ
6
7 = 0,

λ2
4λ

6
7 − λ2

7λ
6
4 + λ2

8λ
6
3 − λ2

3λ
6
8 = 0,

λ1
3(λ2

8 + λ6
4)− λ1

4(λ2
7 + λ6

3) + λ1
7(λ2

4 − λ6
8)− λ1

8(λ2
3 − λ6

7) = 0,

λ1
3(λ2

4 − λ6
8)− λ1

4(λ2
3 − λ6

7)− λ1
7(λ2

8 + λ6
4) + λ1

8(λ2
7 + λ6

3) = 0,

λ2
3(λ1

8 + λ5
4)− λ2

4(λ1
7 + λ5

3) + λ2
7(λ1

4 − λ5
8)− λ2

8(λ1
3 − λ5

7) = 0,

λ2
3(λ1

4 − λ5
8)− λ2

4(λ1
3 − λ5

7)− λ2
7(λ1

8 + λ5
4) + λ2

8(λ1
7 + λ5

3) = 0,

λ5
3(λ2

8 + λ6
4)− λ5

4(λ2
7 + λ6

3) + λ5
7(λ2

4 − λ6
8)− λ5

8(λ2
3 − λ6

7) = 0,

λ5
3(λ2

4 − λ6
8)− λ5

4(λ2
3 − λ6

7)− λ5
7(λ2

8 + λ6
4) + λ5

8(λ2
7 + λ6

3) = 0,

λ6
3(λ1

8 + λ5
4)− λ6

4(λ1
7 + λ5

3) + λ6
7(λ1

4 − λ5
8)− λ6

8(λ1
3 − λ5

7) = 0,

λ6
3(λ1

4 − λ5
8)− λ6

4(λ1
3 − λ5

7)− λ6
7(λ1

8 + λ5
4) + λ6

8(λ1
7 + λ5

3) = 0.
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Since the first four equations may be rewritten as

1

2

[
(λ1

8 + λ5
4)(λ1

3 + λ5
7)− (λ1

8 − λ5
4)(λ1

3 − λ5
7)

+(λ1
4 − λ5

8)(λ1
7 − λ5

3)− (λ1
4 + λ5

8)(λ1
7 + λ5

3)
]

= 0,

1

2

[
(λ1

3 − λ5
7)(λ1

4 + λ5
8)− (λ1

3 + λ5
7)(λ1

4 − λ5
8)

−(λ1
7 + λ5

3)(λ1
8 − λ5

4) + (λ1
7 − λ5

3)(λ1
8 + λ5

4)
]

= 0,

1

2

[
(λ2

3 + λ6
7)(λ2

8 + λ6
4)− (λ2

3 − λ6
7)(λ2

8 − λ6
4)

+(λ2
4 − λ6

8)(λ2
7 − λ6

3)− (λ2
4 + λ6

8)(λ2
7 + λ6

3)
]

= 0,

1

2

[
(λ2

4 − λ6
8)(λ2

3 + λ6
7)− (λ2

4 + λ6
8)(λ2

3 − λ6
7)

+(λ2
8 − λ6

4)(λ2
7 + λ6

3)− (λ2
8 + λ6

4)(λ2
7 − λ6

3)
]

= 0,

it is easy to see that if the linear equations are satisfied then all of the equations

above are satisfied. Therefore an infinitesimal complex deformation is a full complex

deformation.

We will now prove the main theorem of the section.

Theorem 3.4.7. Let N be a compact complex surface inside a four-dimensional

Calabi–Yau manifold M . Then the moduli space of Cayley deformations of N in

M near N is isomorphic to the moduli space of complex deformations of N in M ,

which near N is a smooth manifold of dimension

dimCKer ∂̄ + dimCKer ∂̄∗ = 2 dimCKer ∂̄,

where

∂̄ : C∞(ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)),

∂̄∗ : C∞(Λ0,2N ⊗ ν1,0
M (N))→ C∞(Λ0,1N ⊗ ν1,0

M (N)).

Proof. The moduli space of complex deformations of N is isomorphic to the kernel

of the operator G as we saw in Proposition 3.4.2. The kernel of the operator G is

isomorphic to the kernel of its linear part by Lemma 3.4.6, which is isomorphic to
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the sum of the kernels of ∂̄ and ∂̄∗ by Proposition 3.4.4. The kernels of ∂̄ and ∂̄∗ are

isomorphic by Corollary 3.4.5.

By Theorem 3.3.4, the moduli space of Cayley deformations of N , if it is smooth, has

dimension at most equal to the dimension of the kernel of ∂̄+ ∂̄∗, which is equal to the

sum of the dimensions of the kernel of ∂̄ and ∂̄∗ since N is compact. Since the moduli

space of Cayley deformations of N contains the moduli space of complex deformations

of N , we see that they must have the same dimension, and therefore are the same.

With this theorem, we achieve our aims of showing directly that complex and Cayley

deformations of a compact complex surface inside a Calabi–Yau manifold are the same,

as can be deduced from Proposition 1.2.6. Moreover, we have matched the result of

Kodaira’s theorem 3.1.1 that says that the infinitesimal complex deformations of N

are isomorphic to the kernel of ∂̄ (where we have counted every deformation twice by

considering the complexified normal bundle of N in M).

3.5 Example

We now compute the index of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N)⊕ Λ0,2N ⊗ ν1,0

M (N))→ C∞(Λ0,1N ⊗ ν1,0
M (N)),

using the formula given in Theorem 3.3.5. In this example, the Calabi–Yau manifoldM

is a degree six hypersurface in CP 5 and N is a complete intersection in M . Explicitly,

take

M := {[z0 : z1 : z2 : z3 : z4 : z5] ∈ CP 5 | f(z) = z6
0 + z6

1 + z6
2 + z6

3 + z6
4 + z6

5 = 0},

and

N = {z ∈M | f1(z) = f2(z) = 0},

where fi are irreducible homogeneous polynomials of degree di. Notice that in order

for N to be a smooth manifold we require the Jacobian of g = (f, f1, f2) to have rank
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3 at each point of N . We will compute the first and second Chern classes of M,N and

ν1,0
M (N).

First note that since M is Calabi–Yau, we have that c1(M) ≡ 0. Since ν1,0
CP 5(M) is a

rank one vector bundle, we have that ck(ν
1,0
CP 5(M)) = 0 for k > 1. We can compute

c2(T 1,0CP 5|M) = c2(T 1,0M ⊕ ν1,0
CP 5(M))

= c2(M) + c2(ν1,0
CP 5(M)) + c1(M)c1(ν1,0

CP 5(M))

= c2(M).

Therefore, for ω the Kähler form of CP 5, we have that

c2(M) = c2(CP 5)|M =

(
6

2

)
ω2|M = 15ω2|M .

Denote by OCP 5(d) the −dth tensor power of the tautological line bundle over CP 5

for d < 0 and the dth tensor power of the hyperplane bundle over CP 5 when d > 0.

Then ν1,0
M (N) ∼= OCP 5(d1)|N ⊕OCP 5(d2)|N , and so

c1(ν1,0
M (N)) = (d1 + d2)ω|N ,

c2(ν1,0
M (N)) = d1d2ω

2|N .

So we calculate that

[N ] · [N ] =

∫
N

d1d2 ω
2 = 6d2

1d
2
2.

We have that

c2(M)|N = c2(N) + c2(ν1,0
M (N)) + c1(N)c1(ν1,0

M (N)),

and therefore

c2(N) =
(
15− d1d2 + (d1 + d2)2

)
ω2|N ,

so we find that

χ(N) =

∫
N

(15 + d2
1 + d2

2 + d1d2)ω2 = 90d1d2 + 6d3
1d2 + 6d3

2d1 + 6d2
1d

2
2.
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Finally,

p1(N) = −c2(TN ⊗ C) = c1(N)2 − 2c2(N)

= [(d1 + d2)2 − 2(15 + d2
1 + d2

2 + d1d2)]ω2|N

= [−d2
1 − d2

2 − 30]ω2|N .

Therefore

sign(N) =
1

3

∫
N

[−30− d2
1 − d2

2]ω2 = −60d1d2 − 2d3
1d2 − 2d3

2d1.

Therefore

1

2
χ(N) +

1

2
sign(N)− [N ] · [N ]

= 45d1d2 + 3d3
1d2 + 3d3

2d1 + 3d2
1d

2
2 − 30d1d2 − d3

1d2 − d3
2d1 − 6d2

1d
2
2

= 15d1d2 + 2d3
1d2 + 2d3

2d1 − 3d2
1d

2
2. (3.5.1)

Examining Equation (3.5.1), we see that this expression is strictly positive, unbounded

and even for any d1, d2 ∈ N.



Chapter 4

Fredholm theory on noncompact

manifolds

Our main aim for the remainder of this thesis is to extend the results of Chapter 3

to noncompact manifolds. This chapter predominantly contains a literature review

of some results for elliptic operators on noncompact manifolds that we will need in

Chapters 5 and 6.

4.1 Introduction

Let (X, g,Φ) be a Spin(7)-manifold and let Y be a Cayley submanifold of X. In

the proof of Theorem 3.2.6, there are two points at which we need Y to be compact.

Firstly, for the tubular neighbourhood theorem to hold on Y so that we may identify

deformations of Y with normal vector fields on Y . Secondly, we study a nonlinear

elliptic partial differential operator, F , acting on normal vector fields. In order to

apply the Banach space implicit function theorem to F , we require the linear part of

F , D, to surject onto the target space of F . This does not happen in general, and so

we must construct a new operator F that does satisfy the hypotheses of the implicit

91
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function theorem. This construction relies on the linear part of F being a Fredholm

operator.

Asking when an elliptic operator on a noncompact manifold is Fredholm is a highly

nontrivial problem, as this result can fail at even the simplest level, which we will see

in the following well-known example.

Example. Consider the operator

d

dt
: L2

1(R)→ L2(R), (4.1.1)

where Lpk(R) denotes the Sobolev space of functions whose first k (weak) derivatives

lie in Lp(R). This operator is clearly elliptic, however, we will show that its image

isn’t closed, and therefore (4.1.1) is not Fredholm.

Consider the sequence of functions

un(t) :=



t 0 ≤ t < 1,

t−1/2 1 ≤ t < n,

1
n1/2 (n+ 1− t) n ≤ t ≤ n+ 1,

0 otherwise,

in L2
1 which have weak derivative

vn(t) :=



1 0 ≤ t < 1,

−1
2
t−3/2 1 ≤ t < n,

− 1
n1/2 n ≤ t ≤ n+ 1,

0 otherwise.

Then (vn) is a sequence in Im d
dt

, and vn → v in L2, where

v =


0 t < 0,

1 0 ≤ t < 1,

−1
2
t−3/2 t ≥ 1,
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We can see that v is the weak derivative of u, where

u =


0 t < 0,

t 0 ≤ t < 1,

t−1/2 t ≥ 1,

but u /∈ L2
1(R), and so v /∈ Im d

dt
.

In the mid-eighties, a Fredholm theory for elliptic operators on manifolds with a

cylindrical end was developed simultaneously by Lockhart and McOwen [35] and also

Maz’ja and Plamenevskĭı [42]. Following Lockhart and McOwen, we will quote the

main results of this theory and discuss how these results can be applied to the type of

noncompact manifold that we will consider in subsequent chapters.

We are interested in the index of Fredholm operators, and so in Section 4.4 we will

discuss the Atiyah–Patodi–Singer index theorem for elliptic operators on compact

manifolds with boundary. Most of the work in this chapter is a literature review, or

an explanation of a reasonably common application of the theory in the literature

review. The work in Section 4.4.3, which explains how to apply the Atiyah–Patodi–

Singer index theorem to conically singular manifolds, is, to the author’s knowledge, a

new application of this result.

4.2 Elliptic operators on manifolds with cylindrical

end

This section is a review of the main results of Lockhart and McOwen’s paper [35].

In Section 4.2.1 we define the objects studied by Lockhart and McOwen, namely

asymptotically translation invariant operators on manifolds with cylindrical end.

In Section 4.2.2 we define a weighted norm on sections that locally lie in a Sobolev

space. This defines a Banach space, and we will see that for ‘most’ choices of weight,
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asymptotically translation invariant elliptic operators acting on sections in this space

are Fredholm operators. We will quote this result in Section 4.2.3, where we will also

explain how to find the ‘bad weights’ for which a translation invariant elliptic operator

acting on the Sobolev space with weighted norms are not Fredholm.

4.2.1 Asymptotically translation invariant operators

Let X be a manifold with a cylindrical end, that is, a noncompact manifold without

boundary that contains a compact manifold X0 with ∂X0 = L (a closed manifold of

dimension one less than X0), satisfying

X\X0 = L× R+ = {(ω, t) | l ∈ L, 0 < t <∞}.

Call X\X0 the cylindrical end of X. Let E and F be vector bundles of forms or

(s, q)-tensors over X, and write C∞(E) for the smooth sections of E and C∞0 (E) for

smooth sections of E with compact support. Let

A : C∞0 (E)→ C∞0 (F ),

be an mth-order linear differential operator with smooth coefficients.

The following definition is taken from Lockhart’s paper [34, §2].

Definition 4.2.1. Let g be a metric on X that is asymptotic to a product metric

g∞ = dt2 + gL on the cylindrical end L× (0,∞) of X, in the sense that for all j ∈ N

|∇j
∞(g − g∞)|g∞ = O(e−δt), (4.2.1)

as t→∞ for any δ > 0, where ∇∞ is the Levi-Civita connection of g∞. Write

A =
m∑
j=0

aj · ∇j,

where aj ∈ C∞(E∗⊗F ⊗ (TX)⊗j), ‘·’ denotes the tensor product followed by contrac-

tion and ∇ is the Levi-Civita connection of g. We say that A is translation invariant

if it is invariant under the R+-action on the cylindrical end L× (0,∞) of X.
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Example. Let X be a manifold with cylindrical end L× (0,∞), and let g be a metric

on X that is asymptotic to the product metric g∞ = dt2 + gL on the cylindrical end

of X. Then the exterior derivative

d : C∞(ΛpX)→ C∞(Λp+1X),

is a translation invariant operator on X. This is easy to see. First recall that d does

not depend on the choice of metric on X. Therefore, if e1, . . . , en is an orthonormal

frame for (L, gL) with dual coframe e1, . . . , en then we can take, for α ∈ C∞(ΛmX)

dα = dt ∧ ∂α
∂t

+
n∑
i=1

ei ∧∇eiα,

where ∇ is the Levi-Civita connection of (L, gL). Then since if t′ = t + t0 for some

t0 ∈ (0,∞),

dt = dt′,
∂

∂t
=

∂

∂t′
,

we see that d is translation invariant on L× (0,∞).

Definition 4.2.2. Let g be a metric on X asymptotic to a product metric on the

cylindrical end of X, and write

A =
m∑
j=0

aj · ∇j,

A∞ =
m∑
j=0

a∞j · ∇j,

where A∞ is translation invariant, aj, a
∞
j ∈ C∞(E∗ ⊗ F ⊗ (TX)⊗j), ‘ · ’ denotes the

tensor product followed by contraction and ∇ is the Levi-Civita connection of g.

We say that A is asymptotically translation invariant to A∞ if on the cylindrical end

L× (0,∞) of X for 0 ≤ j ≤ m and all k ∈ N

|∇k(aj − a∞j )|g = O(e−δt),

as t→∞ for some δ > 0.
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Example. Let X be a manifold with cylindrical end and let g be a metric on X that

is asymptotic to the product metric g∞ = dt2 + gL on the cylindrical end L× (0,∞)

of X. Then the operator

d∗ : C∞(Λm+1X)→ C∞(ΛmX),

is asymptotically translation invariant to the operator

d∗∞ : C∞(Λm+1X)→ C∞(ΛmX),

where d∗ is computed using g and d∗∞ is computed using g∞. We can see that d∗∞ is

translation invariant by writing for β ∈ C∞(Λm+1X)

d∗∞β = − ∂

∂t
y
∂β

∂t
−

n∑
i=1

eiy∇eiβ,

where e1, . . . , en is an orthonormal frame for (L, gL) and ∇ is the Levi-Civita con-

nection of gL. Since the metric g is asymptotic to g∞, it follows that we can write

the operator d∗ in terms of the Levi-Civita connection of g∞ with coefficients that

approach the coefficients of d∗∞ as t→∞.

4.2.2 Weighted Sobolev spaces

For this definition we follow Lockhart [34, §3].

Definition 4.2.3. Let X be a manifold with a cylindrical end L×(0,∞) as in Section

4.2.1. Let g be a metric on X asymptotic to a product metric on the cylindrical end

of X. For a vector bundle E over X, define the weighted Sobolev spaces W p
k,δ(E) to

be the space of sections σ ∈ Lpk,loc(E) so that

‖σ‖W p
k,δ

:=

(
k∑
j=0

∫
X

|ρ−δ∇jσ|p volg

)1/p

, (4.2.2)

is finite, where ρ : X → (0, 1] satisfies ce−t ≤ ρ(t) ≤ Ce−t on L× (0,∞) and is equal

to one elsewhere.
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Remark. By writing ρ here rather than e−t Definition 4.2.3 will generalise to asymp-

totically cylindrical manifolds. It turns out that weighted norms (4.2.2) defined using

different asymptotically invariant metrics on X are equivalent, and moreover the def-

inition of the norm (4.2.2) is equivalent to the metric independent definition of this

norm given in Lockhart and McOwen’s original paper [35, Eqn 1.4].

The spaces W p
k,δ(E) are Banach spaces. They contain C∞0 (E) as a dense subset [34,

Prop 3.9].

4.2.3 Results

We may now quote the main results of Lockhart and McOwen.

Theorem 4.2.1 ([35, Thm 6.2]). Let X be a manifold with a cylindrical end, E and

F vector bundles over X with the same rank and let

A : C∞0 (E)→ C∞0 (F ),

be a linear elliptic mth-order differential operator with smooth coefficients which is

asymptotically translation invariant to

A∞ : C∞0 (E)→ C∞0 (F ).

Then A and A∞ extend to bounded maps

A : W p
k+m,δ(E)→ W p

k,δ(F ), (4.2.3)

A∞ : W p
k+m,δ(E)→ W p

k,δ(F ). (4.2.4)

There exists a discrete set DA∞ ⊆ R such that the maps (4.2.3) and (4.2.4) are Fred-

holm if, and only if, δ ∈ R\DA∞. Moreover, the indices of (4.2.3) and (4.2.4) differ

by a constant independent of δ.

Remark. We call the set DA∞ the exceptional weights for A∞.

Using the notation of Theorem 4.2.1, it will be useful later, in particular in Chapter

6, to describe the set DA∞ explicitly. This will also help us to state a result, Theorem

4.2.2 below, about how the indices of (4.2.3) and (4.2.4) change as the weight δ varies.
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Let A∞ be a translation invariant operator as in Theorem 4.2.1. Take the Fourier

transform of the following equation on the cylindrical end L× (0,∞) of X

A∞

(
l,∇L,

∂

∂t

)
σ(l, t) = 0, (4.2.5)

and consider the eigenvalue problem on L: for λ ∈ C

A∞(l,∇L, iλ)σ̂(l, λ) = 0. (4.2.6)

Define CA∞ to be the set of λ ∈ C for which the eigenvalue problem (4.2.6) has a

nontrivial solution. Then define

DA∞ := {Im λ |λ ∈ CA∞}. (4.2.7)

For λ ∈ DA∞ define d(λ) to be the dimension of the space of solutions to (4.2.5) of

the form

e−λtp(ω, t),

where p is a polynomial in t with coefficients in C∞(E|L). The final result of Lockhart

and McOwen that we will need tells us how the index of an elliptic operator acting on

weighted spaces changes as the weight varies.

Theorem 4.2.2 ([35, Thm 1.2]). Use the notation of Theorem 4.2.1 and the discussion

above. Denote the indices of the operators (4.2.3) and (4.2.4) by indδ A and indδ A∞

respectively. Let δ1, δ2 ∈ R\DA∞ with δ1 < δ2. Then

indδ1 A− indδ2 A = indδ1 A∞ − indδ2 A∞ =
∑

δ∈(δ1,δ2)∩DA∞

d(δ).

Remark. Lockhart and McOwen generalised these results to manifolds with finitely

many cylindrical ends [35, Thm 8.1]. In this case, the weighted Sobolev spaces of

Definition 4.2.3 come with an n-tuple of weights which allows sections to decay with

different rates on each end. Given a linear elliptic operator on such a manifold acting

on these weighted Sobolev spaces, the operator is Fredholm as long as no single weight

of the n-tuple is a ‘bad weight’. This leads to a slightly more complicated change of

index formula. The work in this thesis will deal with manifolds with one end for

brevity, but it is worth mentioning that generalising to manifolds with multiple ends

is not difficult.
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4.3 Elliptic operators on cones

In Chapters 5 and 6 the manifolds that we will be considering will not be manifolds

with cylindrical ends, but manifolds with conical singularities, which we will define in

Section 4.3.1. We will still be able to apply Theorems 4.2.1 and 4.2.2 in this case, as

we will explain in Section 4.3.2.

A particularly useful reference for the material in this section is the paper of Lockhart

[34], who wrote about how the results of his paper with McOwen [35] can be generalised

to noncompact manifolds with ‘admissible’ metrics. This class of metrics includes

metrics on conically singular manifolds defined below.

4.3.1 Conically singular manifolds

Heuristically speaking, a conically singular manifold can be thought of as a compact

topological space that is a smooth Riemannian manifold away from a point. If the

manifold near this point is diffeomorphic to a product L×(0, ε), and the metric on the

manifold is close to the cone metric on L× (0, ε), then we call the manifold conically

singular. This idea is made formal in the following definition, taken from [37, Defn

3.1].

Definition 4.3.1. Let M be a connected Hausdorff topological space and let x̂ ∈M .

Suppose that M̂ := M\{x̂} is a smooth Riemannian manifold with metric g. Then

we say that M is conically singular at x̂ with cone C and rate λ if there exist ε > 0,

λ > 1 and a closed Riemannian manifold (L, gL) of dimension one less than M , an

open set x̂ ∈ U ⊆M and a diffeomorphism

Ψ : (0, ε)× L→ U\{x̂},

such that

|∇j
C(Ψ∗g − gC)|gC = O(rλ−1−j) for j ∈ N as r → 0, (4.3.1)



100 CHAPTER 4. FREDHOLM THEORY ON NONCOMPACT MANIFOLDS

where r is the coordinate on (0,∞) on the cone C = (0,∞) × L, gC = dr2 + r2gL is

the cone metric on C and ∇C is the Levi-Civita connection of gC .

4.3.2 Elliptic operators on conically singular manifolds

In this section we will explain how we can relate conically singular manifolds to man-

ifolds with cylindrical ends, and explain how we can apply Theorems 4.2.1 and 4.2.2

to elliptic operators on conically singular manifolds.

Cylinders and cones

Cylinders and cones are conformally equivalent. Let L be a closed Riemannian mani-

fold and consider L× (0,∞) with the metrics

gcone = dr2 + r2gL, gcyl = dt2 + gL,

where gL is a metric on L and r and t are coordinates on (0,∞). Then we can write

r = e−t, which enables us to see that

gcone = e−2t(dt2 + gL) = e−2tgcyl.

We will show that a conically singular manifold is conformally equivalent to an asymp-

totically cylindrical manifold. That is, a manifold with a cylindrical end equipped

with a metric g which is asymptotic to a product metric gcyl (in the sense of Equation

(4.2.1)).

Definition 4.3.2. Let M be a conically singular manifold at x̂ with cone (0,∞)×L.

Use the notation of Definition 4.3.1. We say that a smooth function ρ : M̂ → (0, 1] is

a radius function for M if ρ is bounded below by a positive constant on M\U , while

on U\{x̂} there exist constants 0 < c < 1 and C > 1 such that

cr < Ψ∗ρ < Cr,

on (0, ε)× L.
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Comparing Equations (4.3.1) and (4.2.1), it is easy to see that if g is a metric on

a conically singular manifold with radius function ρ then ρ−2g is an asymptotically

translation invariant metric.

Weighted Sobolev spaces on conically singular manifolds

We will now define weighted Sobolev spaces for conically singular manifolds. The

definition given here may be deduced from [34, Defn 4.1].

Definition 4.3.3. Let M be an m-dimensional conically singular manifold at x̂ with

metric g on M̂ := M\{x̂}. Let ρ be a radius function for M . For a vector bundle E

define the weighted Sobolev space Lpk,µ(E) to be the set of sections σ ∈ Lpk,loc(E) such

that

‖σ‖Lpk,µ :=

(
k∑
j=0

∫
M̂

|ρj−µ∇jσ|pρ−m volg

)1/p

, (4.3.2)

is finite.

The following lemma allows us to see when the weighted Sobolev spaces of Definitions

4.2.3 and 4.3.3 are isomorphic.

Lemma 4.3.1 ([34, Prop and Defn 4.4]). Let M be a conically singular manifold at x̂

of dimension m with metric g on M̂ := M\{x̂}. Let ρ be a radius function for M . Let

T qs M̂ be the vector bundle of (s, q)-tensors on M̂ . Denote by W p
k,δ(T

q
s M̂) the weighted

space of Definition 4.2.3 with metric ρ−2g and denote by Lpk,µ(T qs M̂) the weighted space

of Definition 4.3.3. Then these spaces are isomorphic, with isomorphism given by

Lpk,µ(T qs M̂)→ W p
k,δ(T

q
s M̂),

σ 7→ ρδ−µ+s−qσ.

Elliptic operators on conically singular manifolds

We will give an analogous result to Theorem 4.2.1 for elliptic operators on conically

singular manifolds. This result is essentially a corollary of Theorem 4.2.1 and Lemma
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4.3.1.

Theorem 4.3.2. Let M be a conically singular manifold at x̂, ρ a radius function for

M and T qs M̂ be the vector bundle of (s, q)-tensors on M̂ := M\{x̂}. Let

A : C∞0 (T qs M̂)→ C∞0 (T q
′

s′ M̂),

be a linear mth-order elliptic differential operator with smooth coefficients such that

there exists λ ∈ R so that

Ã := ρλ+s′−q′Aρq−s,

is asymptotically translation invariant. Then

A : Lpk+m,µ(T qs M̂)→ Lpk,µ−λ(T
q′

s′ M̂), (4.3.3)

is a bounded map and there exists a discrete set DA ⊆ R such that (4.3.3) is Fredholm

if, and only if, µ ∈ R\DA.

Proof. By Theorem 4.2.1, Ã extends to a bounded map

Ã : W p
k+m,µ(T qs M̂)→ W p

k,µ(T q
′

s′ M̂).

By Lemma 4.3.1, the following diagram commutes

Lpk+m,µ(T qs M̂) Lpk,µ−λ(T
q′

s′ M̂)

W p
k+m,µ(T qs M̂) W p

k,µ(T q
′

s′ M̂)

A

Ã

where we use the isomorphisms described in Lemma 4.3.1 between the weighted spaces.

So we see that A is Fredholm exactly when Ã is, and moreover they have the same

Fredholm index. Applying Theorem 4.2.1 to Ã yields the result.

4.4 Atiyah–Patodi–Singer index theorem

We will be interested later in the index of elliptic operators on conically singular

manifolds. The celebrated Atiyah–Singer index theorem gives an expression for the
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index of an elliptic operator on a compact manifold in terms of topological invariants.

This result was extended in collaboration with V. K. Patodi to the Atiyah–Patodi–

Singer index theorem [3] for certain types of elliptic operators on a compact manifold

with boundary. We will quote and discuss the Atiyah–Patodi–Singer index theorem

in Section 4.4.1, before explaining how we can reinterpret the theorem as an index

theorem for translation invariant operators on a manifold with a cylindrical end in

Section 4.4.2. Finally, in Section 4.4.3 we will discuss how we can apply the Atiyah–

Patodi–Singer theorem to elliptic operators on conically singular manifolds.

The material in this section is taken from the original paper of Atiyah, Patodi and

Singer [3], except for the material of Section 4.4.3 which is a new application of this

material to conically singular manifolds.

4.4.1 The APS index theorem

The discovery of the Atiyah–Singer index theorem could arguably be described as

one of the most exciting events in recent mathematical history. Putting aside the

remarkable fact that one can write an analytic quantity such as the index of an elliptic

operator purely in terms of topological invariants, results important in their own right

such as the Hirzebruch signature theorem, the Hirzebruch–Riemann–Roch theorem

and the Gauss-Bonnet theorem can be considered as special cases of this one result.

In order to extend the Atiyah–Singer index theorem to manifolds with boundary,

Atiyah, Patodi and Singer noticed that the index formula for an elliptic operator

on a manifold with boundary should involve a spectral invariant known as the η-

invariant. Suppose that X is a manifold with boundary that is isometric to a product

in the neighbourhood of the boundary. Then we can talk about translation invariant

differential operators A on X. Recall the set of exceptional weights DA of Theorem

4.2.1. These are actually the eigenvalues for the eigenproblem (4.2.6). The η-invariant

is defined in terms of the elements of DA.
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We now quote the Atiyah–Patodi–Singer index theorem.

Theorem 4.4.1 ([3, Thm 3.10]). Let X be a compact manifold with boundary Y , E

and F vector bundles over X and let

A : C∞(E)→ C∞(F ),

be a linear first order elliptic differential operator on X. We assume that, in a neigh-

bourhood Y × I of the boundary, A takes the special form

A = σ

(
∂

∂u
+B

)
,

where u is the inward normal coordinate, σ is a bundle isomorphism E|Y → F |Y and

B is a self-adjoint elliptic operator on Y . Let C∞(E;P ) denote the space of sections

f of E satisfying the boundary condition

Pf(·, 0) = 0,

where P is the spectral projection of A corresponding to non-negative eigenvalues.

Then

A : C∞(E;P )→ C∞(F ),

has a finite index given by

ind A =

∫
X

α0(x) dx− h+ η(0)

2
, (4.4.1)

where α0, h and η are defined as follows:

(i) α0(x) is the constant term in the asymptotic expansion (as t→ 0) of∑
e−tµ

′|φ′µ(x)|2 −
∑

e−tµ
′′|φ′′µ(x)|2,

where µ′, φ′µ denote the eigenvalues and eigenfunctions of A∗A on the double of

X, and µ′′, φ′′µ are the corresponding objects for AA∗.

(ii) h = dim Ker B = multiplicity of the 0-eigenvalue of B.

(iii) η(s) =
∑

λ 6=0 sign λ|λ|−s, where λ runs over the eigenvalues of B.
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In (iii) the series converges absolutely for Re s large and then η(s) extends as a mero-

morphic function on the whole s-plane with a finite value at s = 0. Moreover, if the

asymptotic expansion in (i) has no negative power of t then η(s) is holomorphic for

Re s > −1/2.

Example. Perhaps the most intimidating term in Equation (4.4.1) is α0(x). However,

this term can be identified with topological invariants. As an example, let X be a

complex manifold, E be some holomorphic vector bundle over X and consider the

operator

A = ∂̄ + ∂̄∗ : Ω0,even(E)→ Ω0,odd(E),

acting between E-valued (0, 2k)- and (0, 2k + 1)-forms. Then in this case [50, Thm

1.6] ∫
X

α0(x)dx =

∫
X

ch(E)T (X),

where ch(E) is the Chern character of E and T (X) is the Todd class of X.

4.4.2 The APS index theorem for translation invariant oper-

ators

Let X be a manifold with boundary Y which is isometric to a product near the

boundary. Let E and F be vector bundles over X. Let

A : C∞(E)→ C∞(F ),

be a first order linear elliptic operator that takes the form

σ

(
∂

∂u
+B

)
,

in a neighbourhood of the boundary of X. Then we can attach an infinite half cylinder

Y × R+ to the boundary of X, making a manifold X̂ with cylindrical end. We can

extend A to a translation invariant operator on X̂, the objects of study in Section 4.2.

Following [3, §3], we will explain how we can transform Theorem 4.4.1 into a theorem

for translation invariant operators on manifolds with cylindrical ends.
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Definition 4.4.1. Let X̂ be a manifold with a cylindrical end of the form Y × R+

with the product metric. Let E be a vector bundle over X̂. Let

A : C∞(E)→ C∞(F ),

be a first order linear elliptic operator that takes the form

A = σ

(
∂

∂u
+B

)
,

where B is a self-adjoint elliptic operator. Call f an extended L2-section of E if

f ∈ L2
loc(E) and on the cylindrical end of X̂, for large t, f takes the form

f(y, t) = g(y, t) + f∞(y),

for g ∈ L2(E) and f∞ ∈ Ker B.

Proposition 4.4.2 ([3, Prop 3.11, Cor 3.14]). Let X be a manifold with boundary Y

isometric to a product near the boundary. Define X̂ to be X with the cylinder Y ×R+

attached to the boundary. Extend the vector bundles E and F over X to X̂ in the

natural way. Consider the operator

A : C∞(E;P )→ C∞(F ),

from Theorem 4.4.1. Then we have that

(i) Ker A is isomorphic to the space of L2 solutions of Af = 0 on X̂,

(ii) Ker A∗ is isomorphic to the space of extended L2 solutions of A∗f = 0 on X̂.

We can write

ind A = h(E)− h(F )− h∞(F ), (4.4.2)

where h(E) is the dimension of the space of L2-solutions of Af = 0 in X̂, h(F ) the

corresponding dimension for A∗ and h∞(F ) is the dimension of the subspace of Ker B

consisting of limiting values of extended L2 sections f of F satisfying A∗f = 0.

Remark. Note that [3, (3.25)]

h = h∞(E) + h∞(F ). (4.4.3)
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Combining Theorem 4.4.1 and Proposition 4.4.2 we have the following index theorem

for translation invariant first order elliptic differential operators on manifolds with a

cylindrical end.

Corollary 4.4.3. Let A be a linear elliptic first order translation invariant differential

operator on a manifold with a cylindrical end X̂. Use the notation of Theorem 4.4.1

and Proposition 4.4.2. Then

indL2A =

∫
X̂

α0(x) dx− h+ η(0)

2
+ h∞(F ). (4.4.4)

4.4.3 The APS index theorem for elliptic operators on coni-

cally singular manifolds

We bring this chapter to its conclusion by explaining how we can apply the Atiyah–

Patodi–Singer index theorem 4.4.1 to elliptic operators on conically singular manifolds,

Proposition 4.4.5 below. This is similar to the application of the results of Section 4.2

to conically singular manifolds described in Section 4.3.2.

We first give a technical result that relates the adjoint of a differential operator on

a conically singular manifold to the adjoint of the related asymptotically translation

invariant operator acting on the conformally equivalent manifold with cylindrical end.

Lemma 4.4.4. Let M be an m-dimensional conically singular manifold at x̂ and let

ρ be a radius function for M . Write M̂ := M\{x̂}, and g for the metric on M̂ . Let

A : C∞0 (T qs M̂)→ C∞0 (T q
′

s′ M̂),

be a linear first order differential operator on M̂ and suppose there exists λ ∈ R so

that

Ã := ρλ+s′−q′Aρq−s,

is an asymptotically translation invariant operator. Then the formal adjoint of the

operator Ã (with respect to the metric ρ−2g)

Ã∗ : C∞0 (T q
′

s′ M̂)→ C∞0 (T qs M̂),



108 CHAPTER 4. FREDHOLM THEORY ON NONCOMPACT MANIFOLDS

is of the form

Ã∗ = ρs−q+mA∗ρλ−s
′+q′−m,

where

A∗ : C∞0 (T q
′

s′ M̂)→ C∞0 (T qs M̂),

is the formal adjoint of A with respect to g.

Moreover, using the notation of Definitions 4.2.3 and 4.3.3, the kernel of

Ã∗ : W p
k+1,µ(T q

′

s′ M̂)→ W p
k,µ(T qs M̂), (4.4.5)

is isomorphic to the kernel of

A∗ : Lpk+1,µ+λ−m(T q
′

s′ M̂)→ Lpk,µ−m(T qs M̂), (4.4.6)

for any µ ∈ R, k ∈ N and 1 < p <∞.

Proof. Let v ∈ C∞0 (T qs M̂) and w ∈ C∞0 (T q
′

s′ M̂). Then∫
M̂

〈Ãv, w〉ρ−2g volρ−2g =

∫
M̂

〈ρλ+s′−q′Aρq−sv, w〉ρ−2g volρ−2g

=

∫
M̂

ρ2q′−2s′〈ρλ+s′−q′Aρq−sv, w〉g ρ−mvolg

=

∫
M̂

〈ρλ−s′+q′Aρq−sv, w〉g ρ−mvolg

=

∫
M̂

〈Aρq−sv, ρλ−m−s′+q′w〉g volg

=

∫
M̂

〈v, ρq−sA∗ρλ−m−s′+q′w〉g volg

=

∫
M̂

ρ2q−2s〈v, ρs−q+mA∗ρλ−m−s′+q′w〉g ρ−mvolg

=

∫
M̂

〈v, ρs−q+mA∗ρλ−m−s′+q′w〉ρ−2g volρ−2g,

where we have used that A∗ is the formal adjoint of A with respect to the metric g,

which shows that

Ã∗ := ρs−q+mA∗ρλ−m−s
′+q′ ,
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is the formal adjoint of Ã with respect to the metric ρ−2g. Since by Lemma 4.3.1,

ρλ−m−s
′+q′ : W p

k+1,µ(T q
′

s′ M̂)→ Lpk+1,µ+λ−m(T q
′

s′ M̂),

is an isomorphism and so by definition of Ã∗ and A∗ the kernels of (4.4.5) and (4.4.6)

are isomorphic.

We may now deduce the following proposition from Theorem 4.4.1 and Lemma 4.4.4

to give an index theorem for operators on conically singular submanifolds.

Proposition 4.4.5. Let M be an m-dimensional conically singular manifold at x̂ with

radius function ρ. Let T qs M̂ be the vector bundle of (s, q)-tensors on M̂ := M\{x̂}.

Let

A : C∞0 (T qs M̂)→ C∞0 (T q
′

s′ M̂),

be a first order linear elliptic differential operator so that

Ã := ρλ+s′−q′Aρq−s,

is asymptotically translation invariant to Ã∞ for some λ ∈ R. Then for µ ∈ R\D,

given in Theorem 4.3.2, the index of

A : L2
k+1,µ(T qs M̂)→ L2

k,µ−λ(T
q′

s′ M̂), (4.4.7)

differs by a constant from the index indµA∞ of

A∞ := rq
′−s′−λÃ∞r

s−q : L2
k+1,µ(T qs M̂)→ L2

k,µ−λ(T
q′

s′ M̂), (4.4.8)

which satisfies

indεA∞ =

∫
M̂

α0(x)dx− h+ η(0)

2
, (4.4.9)

for ε > 0 chosen so that (0, ε] ∩ D = ∅ and we use the notation of Theorem 4.4.1 and

Proposition 4.4.2 for the terms on the right hand side of (4.4.9) (and these terms are

defined for the translation invariant operator Ã∞).
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Proof. By Theorem 4.3.2, we know that A and Ã have the same kernel and cokernel

when acting on weighted Sobolev spaces, and moreover, the index of these operators

differ from the index of Ã∞ by a constant independent of the weight.

Since Ã∞ is translation invariant, we can apply Theorem 4.4.1 and Corollary 4.4.3 to

Ã∞. Let Kerµ Ã∞ and Kerµ Ã
∗
∞ denote the kernels of

Ã∞ : W 2
k+1,µ(T qs M̂)→ W 2

k,µ(T q
′

s′ M̂),

Ã∗∞ : W 2
k+1,µ(T q

′

s′ M̂)→ W 2
k,µ(T qs M̂),

respectively, where Ã∗∞ is the formal adjoint of Ã∞ with respect to the metric ρ−2g,

where g is the metric on M̂ . Then Theorem 4.4.1 and Corollary 4.4.3 yield that

dim Ker0 Ã∞ − dim Ker0 Ã
∗
∞ =

∫
M̂

α0(x)dx− h+ η(0)

2
+ h∞(T q

′

s′ M̂). (4.4.10)

By definition of Ã∞, Ker0 Ã∞ ∼= Ker0A∞, where KerµA∞ denotes the kernel of (4.4.8),

and by Lemma 4.4.4, Ker0 Ã
∗
∞
∼= Kerλ−mA

∗
∞, where A∗∞ is the formal adjoint of A∞

with respect to the metric g and KerµA
∗
∞ denotes the kernel of

A∗∞ : L2
k+1,µ(T q

′

s′ M̂)→ L2
k,µ−λ(T

q
s M̂).

So we see that

dim Ker0A∞ − dim Kerλ−mA
∗
∞ =

∫
M̂

α0(x)dx− h+ η(0)

2
+ h∞(T q

′

s′ M̂). (4.4.11)

Denote by D the subset of R for which µ ∈ D if, and only if, (4.4.8) is not Fredholm.

Then we might have a problem equating

dim Ker0A∞ − dim Kerλ−mA
∗
∞ = ind0A∞,

since if 0 ∈ D then ind0A∞ may not be defined. Take ε > 0 so that

(0, ε] ∩ D = ∅.

Then indεA∞ is well-defined. Since ε > 0, we have that

KerεA∞ ⊆ Ker0A∞,
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where KerµA∞ denotes the kernel of (4.4.8). It is claimed that

KerεA∞ = Ker0A∞.

To see this, suppose that α ∈ Ker0A∞. Then by elliptic regularity, α is smooth, and

by definition of weighted norm on L2
k+1,0(T qs M̂) α must decay to zero as r → 0 and so

we must have that α = O(rε
′
) for some ε′ > 0. Taking ε′ smaller if necessary we can

guarantee that D ∩ (0, ε′] = ∅. The rate of decay of α allows us to deduce that α ∈

L2
k+1,ε′′(T

q
s M̂) where 0 < ε′′ < ε′. But then we are done, since there is no exceptional

weight between ε and ε′′, and so [35, Lem 7.1] says that KerεA∞ = Kerε′A∞. Notice

that this tells us that the function µ 7→ dim KerµA∞ is upper semi-continuous at zero.

Since ε > 0

Kerλ−mA
∗
∞ ⊆ Ker−ε+λ−mA

∗
∞.

A similar argument to the one given above shows that the function µ 7→ dim KerµA
∗
∞

is lower semi-continuous (in particular at µ = λ−m) and so the set

Ker−ε+λ−mA
∗
∞\Kerλ−mA

∗
∞,

is nonempty, but its elements are exactly the limiting sections of the extended L2-

sections of T q
′

s′ M̂ . Therefore

dim Kerλ−mA
∗
∞\Ker−ε+λ−mA

∗
∞ = h∞(T q

′

s′ M̂),

i.e., exactly the dimension of the space of limiting sections of extended L2-sections of

T q
′

s′ M̂ . This allows us to deduce that

Ker0A∞ −Kerλ−mA∞ − h∞(T q
′

s′ (M̂)) = indεA∞.

Applying this to (4.4.11) we find that

indεA∞ =

∫
M̂

α0(x)dx− h+ η(0)

2
, (4.4.12)

as claimed.
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Chapter 5

Deformation theory of conically

singular Cayley submanifolds

In this chapter we will extend the results of Chapter 3 to conically singular Cayley

submanifolds and complex surfaces.

5.1 Introduction

In this chapter we will study the deformation theory of conically singular Cayley

submanifolds inside Spin(7)-manifolds. We define conically singular submanifolds in

Definition 5.2.2 below, however, a conically singular submanifold is, in particular,

a conically singular manifold which we defined earlier in Definition 4.3.1. We have

already proved results on the deformation theory of compact Cayley submanifolds

in Spin(7)-manifolds in Chapter 3, and we know that the two barriers to extending

these results to noncompact Cayley manifolds are the lack of a tubular neighbourhood

theorem and the failure of elliptic operators on noncompact manifolds to be Fredholm.

In Chapter 4, however, we saw that by introducing weighted norms on spaces of

sections on conically singular manifolds that as long as we are careful about our choice

113
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of weight we may deduce that elliptic operators on conically singular manifolds are

Fredholm.

In Section 5.2 we will define conically singular submanifolds and give an example of

a conically singular complex submanifold of a Calabi–Yau manifold. We will also

prove a tubular neighbourhood theorem for cones in Rn in Proposition 5.2.3, which

we will use to prove a tubular neighbourhood theorem for conically singular subman-

ifolds in Proposition 5.2.4. In Definition 5.2.5 we will define the moduli space of

conically singular Cayley deformations of a conically singular Cayley submanifold Y

in a Spin(7)-manifold X that we will be studying in this chapter. Heuristically, these

are deformations of the nonsingular part of Y , Ŷ , that are Cayley and are themselves

conically singular with the same rate and cone as Y . We will then prove Proposition

5.2.5, which identifies this moduli space near to Y with the kernel of a nonlinear dif-

ferential operator F̂ acting on smooth sections of the normal bundle of Y in X which

have a certain rate of decay near to the singular point of Ŷ .

In Section 5.3 we will prove our first main result of this chapter, Theorem 5.3.3, on

deformations of conically singular Cayley submanifolds.

Theorem. Let Y be a CS Cayley submanifold at x̂ with cone C and rate µ ∈ (1, 2)\D

of a Spin(7)-manifold X. Let D denote the first order elliptic differential operator

defined in (3.2.6). Then there exist a smooth manifold K̂0, which is an open neigh-

bourhood of 0 in the kernel of (5.1.1), and a smooth map ĝ2 from K̂0 into the cokernel

of (5.1.1) with ĝ2(0) = 0 so that an open neighbourhood of Y in the moduli space of

CS Cayley deformations of Y in X, M̂µ(Y ) from Definition 5.2.5, is homeomorphic

to an open neighbourhood of 0 in Ker ĝ2.

Moreover, the expected dimension of M̂µ(Y ) is given by the index of the linear elliptic

operator

D : Lpk+1,µ(νX(Ŷ ))→ Lpk,µ−1(E). (5.1.1)

If the cokernel of (5.1.1) is {0} then M̂µ(Y ) is a smooth manifold near Y of the same

dimension as the kernel of (5.1.1). Here D is the set of weights µ ∈ R for which
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(5.1.1) is not Fredholm from Theorem 4.3.2.

In Section 5.4 we will consider Cayley deformations of a two-dimensional conically

singular complex submanifold N of a Calabi–Yau four-fold M . We will prove Theorem

5.4.4.

Theorem. Let N be a CS complex surface at x̂ with cone C and rate µ ∈ (1, 2)\D

of a Calabi–Yau four-fold M . Then the expected dimension of M̂µ(N) is given by the

index of the linear elliptic operator

∂̄ + ∂̄∗ : Lpk+1,µ(ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ Lpk,µ−1(Λ0,1N̂ ⊗ ν1,0
M (N̂)). (5.1.2)

Moreover if the cokernel of (5.1.2) is {0} then M̂µ(N) is a smooth manifold near N

of the same dimension as the (complex) dimension of the kernel of (5.1.2). Here D is

the set of weights µ ∈ R for which (5.1.1) is not Fredholm from Theorem 4.3.2.

This combines Theorem 5.3.3 with the vector bundle isomorphisms proved in Section

3.3. This will allow us to identify the expected dimension of the moduli space of

conically singular Cayley deformations of N in M with the index of the operator

∂̄ + ∂̄∗ acting on weighted Sobolev spaces.

Finally, in Section 5.5 we will consider complex deformations of a conically singular

complex surface N inside a Calabi–Yau four-fold N . We will prove Theorem 5.5.2.

Theorem. Let N be a conically singular complex surface at x̂ with rate µ ∈ (1, 2)

and cone C inside a Calabi–Yau four-fold M . The moduli space of CS complex de-

formations of N in M , M̂cx
µ (N) given in Definition 5.5.1, is a smooth manifold of

dimension

dimCKer ∂̄ + dimCKer ∂̄∗ = 2dimCKer ∂̄,

where

∂̄ : C∞µ (ν1,0
M (N̂))→ C∞loc(Λ

0,1N̂ ⊗ ν1,0
M (N̂)),

∂̄∗ : C∞µ (Λ0,2N̂ ⊗ ν1,0
M (N̂))→ C∞loc(Λ

0,1N̂ ⊗ ν1,0
M (N̂)).

This will allow us to deduce Corollary 5.5.4.
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Corollary. Let N be a CS complex surface inside a Calabi–Yau four-fold M . Then

the moduli space of CS Cayley deformations of N in M is isomorphic to the moduli

space of CS complex deformations of N in M .

Deformations of conically singular calibrated submanifolds have been studied by other

authors, most notably by Joyce [22], who studied conically singular special Lagrangian

submanifolds and Lotay [37], who studied conically singular coassociative submani-

folds.

5.2 Conically singular Cayley submanifolds

5.2.1 Defining conically singular submanifolds

We begin with the definition of conically singular submanifold that we will use through-

out this chapter.

Let (X, g,Φ) be a Spin(7)-manifold as in Definition 1.2.3. By definition, given any

x ∈ X, there exists an oriented isomorphism ζ : R8 → TxX identifying (Φ|x, g|x)

with the Spin(7)-structure on R8 (Φ0, g0), where Φ0 was defined in Equation (1.2.7)

and g0 is the Euclidean metric. The following definition gives a preferred choice of

coordinates around any given point of X. This definition is analogous to [23, Defn

3.6] and [37, Defn 3.3], which are coordinate systems for almost Calabi–Yau manifolds

and G2-manifolds respectively.

Definition 5.2.1. Let (X, g,Φ) be a Spin(7)-manifold. Then given x ∈ X, there

exist η > 0, an open set x ∈ V ⊆ X, η > 0 and a diffeomorphism

χ : Bη(0)→ V, (5.2.1)

where Bη(0) denotes the ball of radius η around zero in R8, with χ(0) = x and so

that dχ|0 : R8 → TxX is an isomorphism identifying (Φ|x, g|x) with (Φ0, g0). Call χ a

Spin(7) coordinate system for X around x.
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Call two Spin(7)-coordinate systems χ, χ̃ for X around x equivalent if

dχ|0 = dχ̃|0,

as maps R8 → TxM .

In particular, when the Spin(7)-manifold X is a four-dimensional Calabi–Yau man-

ifold, as we saw in (1.2.4) and (1.2.5), we can choose a holomorphic volume form Ω

for X so that χ is a biholomorphism and dχ|0 identifies the Ricci-flat Kähler form

ω with ω0 and Ω with Ω0, the Euclidean Kähler form and holomorphic volume form

respectively.

We may now define conically singular submanifolds inside Spin(7)-manifolds. This

definition is analogous to [23, Defn 3.6] and [37, Defn 3.4] for conically singular sub-

manifolds of almost Calabi–Yau manifolds and G2-manifolds respectively.

Definition 5.2.2. Let (X, g,Φ) be a Spin(7)-manifold and Y ⊆ X compact and

connected such that there exists x̂ ∈ Y such that Ŷ := Y \{x̂} is a smooth submanifold

of X. Choose a Spin(7)-coordinate system χ for X around x̂. We say that Y is

conically singular (CS) at x̂ with rate µ and cone C if there exist 1 < µ < 2, 0 < ε < η,

a compact Riemannian submanifold (L, gL) of S7 of dimension one less than Y , an

open set x̂ ∈ U ⊂ X and a smooth map φ : (0, ε) × L → Bη(0) ⊆ R8 such that

Ψ = χ ◦ φ : (0, ε)× L→ U\{x̂} is a diffeomorphism and φ satisfies

|∇j(φ− ι)| = O(rµ−j) for j ∈ N as r → 0, (5.2.2)

where ι : (0,∞) × L → R8 is the inclusion map given by ι(r, l) = rl, ∇ is the Levi-

Civita connection of the cone metric gC = dr2 + r2gL on C, and | · | is computed using

gC .

Remark. If the smooth, noncompact submanifold Ŷ is a Cayley (complex) subman-

ifold of the Spin(7)-manifold (Calabi–Yau four-fold) X then we say that Y is a CS

Cayley (complex) submanifold of X.

Conically singular submanifolds come with a rate 1 < µ < 2. We must have that µ > 1

to guarantee that a conically singular submanifold is a conically singular manifold (in
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the sense of Definition 4.3.1). The reason for asking that µ < 2 is so that µ does

not depend on the choice of equivalent Spin(7)-coordinate system around the singular

point of the conically singular submanifold.

Lemma 5.2.1. Let Y be a conically singular submanifold at x̂ with rate µ and cone

C of a Spin(7)-manifold (X, g,Φ) with Spin(7)-coordinate system χ around x̂. Then

Definition 5.2.2 is independent of choice of equivalent Spin(7)-coordinate system.

Proof. Let χ̃ be another Spin(7)-coordinate system for X around x̂ equivalent to χ.

Then χ and χ̃ and their differentials agree at zero. Let φ : (0, ε) × L → Bη(0) be

the map from Definition 5.2.2. We will show that Y is conically singular in X with

Spin(7)-coordinate system χ̃ around x̂. Taking φ̃ := χ̃−1 ◦ χ ◦ φ, we have that

|∇j(φ̃− ι)| = |∇j(χ̃−1 ◦ χ ◦ φ− ι)| = |∇j(φ− ι)|+O(r2−j), (5.2.3)

since χ̃−1 ◦ χ(x) = x + xTAx + . . . , and φ(r, l) = rl + O(rµ). So we see that Y is

conically singular at x̂ with cone C in (X, g,Φ) with Spin(7)-coordinate system χ̃,

but in order for Y to be CS with rate µ in this case, Equation (5.2.3) tells us that we

must have that µ < 2.

The following definition is independent of choice of equivalent Spin(7)-coordinate sys-

tem. It is analogous to [37, Defn 3.5].

Definition 5.2.3. Let Y be a conically singular submanifold at x̂ with rate µ and

cone C of a Spin(7)-manifold (X, g,Φ) with Spin(7)-coordinate system χ. Denote by

ζ := dχ|0 : T0R8 → Tx̂X. Define the tangent cone of Y at x̂ to be

Ĉ := ζ ◦ ι(C) ⊆ Tx̂X,

where ι : C → R8 is the inclusion map given in Definition 5.2.2.

On a Calabi–Yau manifold M we are given a Ricci-flat metric ω that we often have

no explicit expression for. The following lemma tells us that Definition 5.2.2 is inde-

pendent of choice of Kähler metric on M .
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Lemma 5.2.2. Let M be a Calabi–Yau four-fold with Ricci-flat Kähler form ω and

let N be a CS submanifold of M as in Definition 5.2.2. Then if ω′ is any other Kähler

form on M then N is still a conically singular submanifold of M with the same rate

and tangent cone.

Proof. Suppose that N is a CS submanifold of M with respect to ω at x̂. Choose a

Spin(7)-coordinate system for M around x̂,

χ : Bη(0)→ V \{x̂},

for some η > 0 and open V ⊆M containing x̂, so that χ(0) = x̂ and

χ∗ω = ω0 +O(|z|2),

where ω0 is the standard Euclidean Kähler form on C4. Let φ, ε, C = (0,∞) × L, ι

and µ be as in Definition 5.2.2.

Now given any other Kähler form ω′ on M , we can find by [14, pg 107] η′ > 0, an

open set x ∈ V ′ ⊆M and a diffeomorphism

χ′ : Bη′(0)→ V ′\{x},

with χ′(0) = x and

χ′∗ω′ = ω0 +O(|z|2).

Since χ and χ′ are diffeomorphisms, dχ|0 and dχ′|0 are isomorphisms C4 → Tx̂M .

Then A := (dχ′|0)−1 ◦ dχ|0 is an invertible linear map C4 → C4. We will show that

N is conically singular in (M,ω′) (taking χ′ to be the coordinate system) with cone

C ′ = Aι(C) and rate µ.

Firstly note that since A is a linear map, C ′ = Aι(C) = {Av | v ∈ ι(C)} is also a cone.

Denote by L′ the link of C ′ (considered as a Riemannian submanifold of S7), and for

any ε′ > 0 write ι′ : L′ × (0, ε′)→ C4 for the inclusion map (r′, l′) 7→ r′l′.

Define φ′ : (0, ε′)×L′ → C4 by φ′ = χ′−1 ◦χ◦φ◦A−1, where ε′ = ε‖A‖. Then this map

is well defined (taking ε′ smaller if necessary) and moreover χ′ ◦φ′ is a diffeomorphism
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onto its image. Moreover, by a similar argument to Lemma 5.2.1 we have that

|∇j(φ′(r′, l′)− ι(r′, l′))| = O(r′µ),

since µ < 2.

Finally, we have that

Ĉ ′ = dχ′|0(ι′(C ′)) = dχ|0 ◦ (dχ|0)−1 ◦ dχ′|0(Aι(C)) = dχ|0(A−1Aι(C)) = Ĉ,

and so the tangent cone to N at x̂ is the same with respect to each metric.

Remark. Note that the proof Lemma 5.2.2 also shows that if N is conically singular

with respect to one Spin(7)-coordinate system, it is conically singular with respect to

any other Spin(7)-coordinate system, although with a different cone in general, but

the same tangent cone.

We can now construct an example of a conically singular complex surface inside a

Calabi–Yau four-fold.

Example. We will model our conically singular complex surface on the following

complex cone in C4. Define C to be the set of (z1, z2, z3, z4) ∈ C4 satisfying

z4
1 + z4

2 + z4
3 + z4

4 = 0,

z3
1 + z3

2 + z3
3 + z3

4 = 0.

Clearly, if z ∈ C, then also λz ∈ C for any λ ∈ R\{0}, and so C is a cone.

Checking the rank of the matrix4z3
1 4z3

2 4z3
3 4z3

4

3z2
1 3z2

2 3z2
3 3z2

4

 ,

at each point of C, we see that the only singular point of C is zero.

As we will discuss in more detail in Chapter 6, a complex cone C in C4 has both a

real link L := S7 ∩ C, and a complex link Σ := π(L), where π : S7 → CP 3 is the

Hopf fibration. We can view the real link of a complex cone as a circle bundle over

the complex link of the cone.
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In this case, the complex link Σ of C is the Riemannian surface in CP 3 is given by

[z0 : z1 : z2 : z3] ∈ CP 3 satisfying

z4
0 + z4

1 + z4
2 + z4

3 = 0,

z3
0 + z3

1 + z3
2 + z3

3 = 0.

We can apply the adjunction formula to find that the canonical bundle of Σ is given

by

KΣ = KCP 3|Σ ⊗OCP 3(4)|Σ ⊗OCP 3(3)|Σ = OCP 3(4 + 3− 3− 1)|Σ = OCP 3(3)|Σ,

where OCP 3(k) denotes the −kth (tensor) power of the tautological line bundle over

CP 3 if k is a negative integer, the kth power of the dual of the tautological line bundle

if k is a positive integer, and the trivial line bundle if k = 0. Then it follows from the

Hirzebruch–Riemann–Roch theorem [17, Thm 5.1.1] that the genus of Σ is

g =
2 + deg OCP 3(3)|Σ

2
=

2 + 3× deg(Σ)

2
= (2 + 3× 4× 3)/2 = 19.

Now consider the Calabi–Yau four-fold M defined by

{[z0 : z1 : z2 : z3 : z4 : z5] ∈ CP 5 | z6
0 + z6

1 + z6
2 + z6

3 + z6
4 + z6

5 = 0}.

Consider the singular submanifold N of M defined to be the set of all [z0 : z1 : z2 :

z3 : z4 : z5] ∈ CP 5 satisfying

z6
0 + z6

1 + z6
2 + z6

3 + z6
4 + z6

5 = 0,

z4
1 + z4

2 + z4
3 + z4

4 = 0,

z3
1 + z3

2 + z3
3 + z3

4 = 0.

The complex Jacobian matrix of the defining equations of N is given by
6z5

0 6z5
1 6z5

2 6z5
3 6z5

4 6z5
5

0 4z3
1 4z3

2 4z3
3 4z3

4 0

0 3z2
1 3z2

2 3z2
3 3z2

4 0

 .
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It can be calculated that there are six singular points on N of the form [ω : 0 : 0 : 0 :

0 : 1], where ω is a 6th root of −1.

We will now prove that N satisfies Definition 5.2.2. We will exploit Lemma 5.2.2 and

check the definition using the metric on M induced from the Fubini–Study metric on

CP 5, denoted by ω.

Denote the singular points of N by {p1, . . . , p6}, where pk = [ωk : 0 : 0 : 0 : 0 : 1] for

ωk := ei(2k−1)π/6. We must construct maps χk so that there exist ηk > 0 and open sets

pk ∈ Vk ⊆M and diffeomorphisms

χk : Bηk(0)→ Vk,

with χk(0) = pk and so that

χ∗kω = ω0 +O(|z|2),

for k = 1, . . . , 6.

For k = 1, . . . 6, define χk : Bηk(0)→M by

χk(w1, w2, w3, w4) = [ωk :
√

2w1 :
√

2w2 :
√

2w3 :
√

2w4 : (1−8(w6
1 +w6

2 +w6
3 +w6

4))1/6],

(5.2.4)

where if a = reiθ for r > 0 and −π < θ ≤ π, we define a1/6 := r1/6eiθ/6. It is clear

that (5.2.4) is a diffeomorphism onto its image. The induced Fubini–Study metric on

M pulls back under χk to the Euclidean metric on C4 at each pk = [ωk : 0 : 0 : 0 :

0 : 1]. Taking φ = ι, where ι : C → C4 is the inclusion map, we see that φ ◦ χ is a

diffeomorphism C to N , and so the definition of conically singular is trivially satisfied.

Remark. In Chapter 6 we will consider three complex cones in C4 and perform some

calculations based on the subsequent work in the current chapter. The reader might

wonder why the above example was not constructed to be conically singular with one of

these cones. Firstly, smooth varieties are trivially conically singular at every point with

cone C1 := C2 ⊆ C4, and so our example in this case would not actually be singular

at any point. Applying the above method to the other cones considered in Chapter

6 that we consider yield examples with too many singularities, and so removing the
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conically singular points does not leave us with a smooth manifold. Conversely, the

calculations performed in Chapter 6 rely on a result that is only available for cones

with complex link given a constant curvature CP 1 in CP 3 and so we will not at this

time be able to perform analogous calculations for the above example.

5.2.2 Tubular neighbourhood theorems

In this section we will prove a tubular neighbourhood theorem for conically singular

submanifolds so that we can identify deformations of conically singular submanifolds

with normal vector fields. We will do this in two steps. Firstly, in Proposition 5.2.3

we will construct a tubular neighbourhood of a cone in Rn using the compact tubular

neighbourhood theorem 3.2.1. We will use this to construct a tubular neighbourhood

of a conically singular submanifold in Proposition 5.2.4. Propositions 5.2.3 and 5.2.4

use ideas of similar results proved by Joyce [23, Thm 4.6] for special Lagrangian cones

and Lotay [37, Prop 6.4] for CS coassociative submanifolds.

Proposition 5.2.3 (Tubular neighbourhood theorem for cones). Let C be a cone in

Rn with link L and let g be a Riemannian metric on Rn (not necessarily the Euclidean

metric). There exists an action of R+ on νRn(C)

t : νRn(C)→ νRn(C),

so that

|t · v| = t|v|. (5.2.5)

We can construct open sets VC ⊆ νRn(C), invariant under (5.2.5), containing the zero

section and TC ⊆ Rn, invariant under multiplication by positive scalars, containing C

that grow like r and a dilation equivariant diffeomorphism

ΞC : VC → TC ,

in the sense that ΞC(t · v) = tΞC(v) for all v ∈ νRn(C). Moreover, ΞC maps the zero

section of νRn(C) to C.
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Proof. We will first address the claim that there exists an R+-action on νRn(C) so that

(5.2.5) holds. First note that points in νRn(C) take the form

(r, l, v(r, l)),

where r ∈ R+, l ∈ L and v(r, l) ∈ νr,l(C). Since any finite-dimensional inner prod-

uct spaces of the same dimension are isometric, given any r′ ∈ R+ we can think of

(r′, l, v(r, l)) as another point in νRn(C) with |v(r, l)|r,l = |v(r, l)|r′,l, where |·|r,l denotes

the norm on νr,l(C) induced from g. Define an action of R+ on νR(C) by

t : νRn(C)→ νRn(C),

(r, l, v(r, l)) 7→ (tr, l, tv(r, l)). (5.2.6)

Then |t · v(r, l)|tr,l = |tv(r, l)|r,l = t|v(r, l)|r,l as claimed. Notice that t · (t′ · v) = (tt′) · v

and so (5.2.6) is a group action in the usual sense.

To prove the tubular neighbourhood part of this proposition, we first apply the tubular

neighbourhood theorem 3.2.1 to the compact submanifold L of Sn−1. (Recall that we

need a metric on Sn−1 to define the exponential map. We take this to be the standard

round metric on Sn−1.) This gives us an open set VL ⊆ νSn−1(L) containing the zero

section and an open set TL ⊆ S7 containing L and a diffeomorphism

ΞL : VL → TL,

so that ΞL maps the zero section of νSn−1(L) to L. Again write points in νRn(C)

as (r, l, v(r, l)), where v ∈ νr,l(C), and similarly points in νSn−1(L) as (l, v(l)) where

v ∈ νl(L) ∼= νr,l(C). Then define

VC :=
{

(r, l, v(r, l)) ∈ νRn(C) |
(
l, r−1v(r, l)

)
∈ VL

}
.

It is clear that VC is invariant under the R+-action (5.2.6) by construction of VC and

the R+-action. We see that VC grows like r in the sense that if v = (r, l, v(r, l)) ∈ VC
then

|v(r, l)|rl ≤ r|V |,
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where V is the diameter of the set V . Now define

TC := {λt | t ∈ TL, λ ∈ R+}.

Then it is clear that TC is dilation invariant, in the sense that it is clearly invariant

under multiplication by positive scalars, and that C ⊆ TC . We see that TC grows like

r in the sense that if t ∈ T , l ∈ L and r ∈ R+ then

|rt− rl| ≤ r|T |,

where |T | is the diameter of the set T . Define

ΞC : VC → TC ,

(r, l, v(r, l)) 7→ rΞL(l, r−1v(r, l)).

It is clear that ΞC is well-defined, bijective and smooth. It is also clear that

ΞC(t · (r, l, v(r, l)) = tΞC(r, l, v(r, l)).

Finally we have that

ΞC(r, l, 0) = rΞL(l, 0) = rl,

by definition of ΞL and so ΞC maps the zero section of νRn(C) to C.

We can use this result to prove a tubular neighbourhood theorem for a conically

singular submanifold.

Proposition 5.2.4. Let Y be a conically singular submanifold of X at x̂ with cone C

and rate µ. Write Ŷ := Y \{x̂}. Then there exist open sets V̂ ⊆ νX(Ŷ ) containing the

zero section and T̂ ⊆ X containing Ŷ and a diffeomorphism

Ξ̂ : V̂ → T̂ ,

that takes the zero section of νX(Ŷ ) to Ŷ . Moreover, we can choose V̂ and T̂ to grow

like ρ as ρ→ 0.
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Proof. Notice that K := Y \U is a compact submanifold of X. So by the compact

tubular neighbourhood theorem 3.2.1 we can find open sets V̂1 ⊆ νX(K) containing

the zero section and T̂1 ⊆ X containing K and a diffeomorphism

Ξ̂1 : V̂1 → T̂1.

We will construct a tubular neighbourhood for Ŷ near x̂. Denote Cε := C ∩ Bε(0).

Use the notation of Definition 5.2.2. Choose φ : Cε → Rn uniquely by asking that

φ(r, l)− ι(r, l) ∈ (Trlι(C))⊥.

Then since

|φ− ι| = O(rµ),

for 1 < µ < 2 as r → 0, making ε smaller if necessarily, we can guarantee that φ(r, l)

lies in the tubular neighbourhood of C given by Proposition 5.2.3. We can therefore

identify φ(Cε) with a normal vector field vφ on C.

Applying Proposition 5.2.3 gives us VC ⊆ νRn(C), TC ⊆ Rn and a diffeomorphism

ΞC : VC → TC .

Denote by VCε the restriction of VC to Cε, and define

Vφ := {v ∈ νBε(0)(Cε) | v + vφ ∈ VCε},

with

Ξφ(v) := ΞC(v + vφ),

for v ∈ Vφ and

Tφ := ΞC(Vφ).

Then ΞC : Vφ → Tφ is a diffeomorphism by construction.

Write Û := U\{x̂}. Define V̂2 := F (Vφ) ⊆ νX(Û), where F is the isomorphism

νBε(0)(Cε) → νX(Û) induced from Ψ and ι and T̂2 := χ(Tφ). By definition, these sets

grow with order ρ as ρ→ 0. Then

χ ◦ Ξφ ◦ F−1 : V̂2 → T̂2,



5.2. CONICALLY SINGULAR CAYLEY SUBMANIFOLDS 127

is a diffeomorphism taking the zero section of νX(Û) to Û . Define V̂ , T̂ and Ξ̂ by

interpolating smoothly between V̂1 and V̂2, T̂1 and T̂2 and Ξ̂1 and Ξ̂2.

5.2.3 Deformation problem

The deformation problem that we will consider in this chapter has been chosen because

of the Fredholm theory that we have available to us on a conically singular manifold.

Let Y be a conically singular Cayley submanifold of a Spin(7)-manifold X. The

tubular neighbourhood theorem for conically singular submanifolds 5.2.4 will allow

us identify the moduli space of Cayley deformations of Ŷ (Y with its singular point

removed) with the kernel of a nonlinear partial differential operator

F̂ : C∞(νX(Ŷ ))→ C∞(E), (5.2.7)

similarly to Proposition 3.2.2 for a compact Cayley manifold. However to deduce a

theorem analogous to Theorem 3.2.6 about the moduli space of Cayley deformations of

Ŷ in X, we will need to extend F̂ to a smooth map of Banach spaces. Moreover we will

require the linear part of F̂ , which will be the elliptic first order differential operator

D defined in Proposition 3.2.3 due to the local nature of this result, to be Fredholm as

a map between these Banach spaces. Therefore we will need to extend F̂ to a smooth

map of the weighted Sobolev spaces we defined in Definition 4.3.3, so that we may

apply the Fredholm theory of Theorem 4.3.2 to its linearisation. However, whereas we

will still be able to use elliptic regularity to see that the kernel of F̂ as a map between

weighted Sobolev spaces contains smooth sections, these sections will have a certain

decay as ρ→ 0, where ρ is a radius function on Y , and therefore will only be a subset

of the kernel of the map (5.2.7). Restricting the map F̂ to spaces of weighted smooth

sections of the normal bundle of Ŷ in X will not give all Cayley deformations of Ŷ ,

but will allow us to find the deformations of Ŷ that are themselves conically singular.

This moduli space will be defined in Definition 5.2.5 below, and this moduli space will

be identified with the kernel of a nonlinear partial differential operator in Proposition
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5.2.5. First we will define a weighted norm on spaces of differentiable sections of a

vector bundle.

Weighted norms on spaces of differentiable sections

Let X will be an n-dimensional CS manifold with a radius function ρ, E a vector

bundle over X̂ (the nonsingular part of X) with a metric and connection.

Definition 5.2.4. Let λ ∈ R and k ∈ N. Define the space Ck
λ(E) to be the space of

sections σ ∈ Ck
loc(E) satisfying

‖σ‖Ckλ :=
k∑
j=0

sup
X̂

|ρj−λ∇jσ| <∞.

We say that σ ∈ C∞λ (E) if σ ∈ Ck
λ(E) for all k ∈ N.

The space Ck
λ(E) is a Banach space, but C∞λ (E) is not in general.

Moduli space

We will now formally define the moduli space of conically singular Cayley deformations

of a Cayley submanifold that we will be studying in this chapter.

Definition 5.2.5. Let Y be a conically singular Cayley submanifold at x̂ with cone

C and rate µ of a Spin(7)-manifold (X, g,Φ) with respect to some Spin(7)-coordinate

system χ, and denote the tangent cone of Y at x̂ by Ĉ. Write Ŷ := Y \{x̂}. Define the

moduli space of conically singular (CS) Cayley deformations of Y in X, M̂µ(Y ), to be

the set of CS Cayley submanifolds Y ′ at x̂ with cone C, rate µ and tangent cone Ĉ of

X so that there exists a continuous family of topological embeddings ιt : Y → X with

ι0(Y ) = Y and ι1(Y ) = Y ′, so that ιt(x̂) = x̂ for all t ∈ [0, 1] and so that ι̂t := ιt|Ŷ is

a smooth family of embeddings Ŷ → X with ι̂0(Ŷ ) = Ŷ and ι̂1(Ŷ ) = Ŷ ′ := Y ′\{x̂}.

Remark. We will later be interested in Cayley and complex deformations of a CS

complex surface in the Spin(7)-manifold that is a Calabi–Yau four-fold, analogous

to the deformation problem that was the subject of study in Chapter 3. Replacing
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‘Cayley’ and ‘Spin(7)-manifold’ with ‘complex’ and ‘Calabi–Yau four-fold’ respectively

in Definition 5.2.5 will allow us to define the moduli space of CS complex deformations

of a complex surface inside a four-dimensional Calabi–Yau manifold.

We will now end this section by identifying the moduli space of Cayley CS deformations

of a CS Cayley submanifold of a Spin(7)-manifold with the kernel of a nonlinear partial

differential operator. This proposition is the analogy of Proposition 3.2.2 of Chapter

3 for the Cayley moduli space given in Definition 5.2.5.

Proposition 5.2.5. Let Y be a CS Cayley submanifold at x̂ with cone C and rate

µ ∈ (1, 2) of a Spin(7)-manifold (X, g,Φ). Let τ be the Λ2
7-valued four-form defined

in Proposition 1.2.9, π : Λ2
7 → E be the projection defined in (3.2.2) and V̂ ⊆ νX(Ŷ ),

T̂ ⊆M and Ξ̂ be the open sets and diffeomorphism from the CS tubular neighbourhood

theorem 5.2.4. For v ∈ C∞(νX(Ŷ )) taking values in V̂ write Ξ̂v for the diffeomorphism

Ξ̂ ◦ v : Ŷ → Ŷv := Ξ̂v(Ŷ ).

Then we can identify the moduli space of CS Cayley deformations of Y in X near Y

with the kernel of the following differential operator

F̂ : C∞µ (V̂ )→ C∞loc(E),

v 7→ π(∗Ŷ Ξ̂∗v(τ |Ŷv)). (5.2.8)

Proof. The deformation Ŷv is Cayley if, and only if, τ |Ŷv ≡ 0, which since Ξ̂v is a

diffeomorphism is equivalent to v ∈ Ker F̂ (similarly to the proof of Proposition 3.2.2),

and since v, τ, Ξ̂v are all smooth, we see that F̂ takes values in C∞loc(E) at claimed.

It remains to show that Yv := Ŷv ∪ {x̂} is a CS submanifold of X at x̂ with cone C

and rate µ (with respect to the same Spin(7)-coordinate system as Y ) if, and only if,

v ∈ C∞µ (V̂ ).

Let v be a smooth normal vector field on Ŷ , and let Ŷv := Ξ̂v(Ŷ ). Use the notation of

Definition 5.2.2. Choose φ : (0, ε)× L→ Bε(0) uniquely by requiring that

φ(r, l)− ι(r, l) ∈ (Trlι(C))⊥.
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Now we can use Ψ and ι to identify νX(Û) with νBε(0)(ι(Cε)), where Û := U\{x̂} and

Cε := (0, ε)×L. Write vC for the section of νBε(0)(ι(Cε)) corresponding to v under this

identification.

Making ε and U smaller if necessary, by the definition of the tubular neighbourhood

map in Proposition 5.2.4, we can define a map φv : Cε → Bε(0) by

φv(r, l) = Ξφ(vC(r, l)),

where Ξφ was defined in the proof of Proposition 5.2.4, so that χ◦φv : Cε → Ξv(Û) ⊆ Ŷv

is a diffeomorphism. So we see that for Yv to be a CS submanifold of X with rate µ

and cone C we must have that

|∇j(φv(r, l)− ι(r, l))| = O(rµ−j), (5.2.9)

for all j ∈ N as r → 0. Now we can write

|∇j(φv − ι)| ≤ |∇j(φv − φ)|+ |∇j(φ− ι)|,

and so (5.2.9) holds if, and only if,

|∇j(φv − φ)| = O(rµ−j),

for j ∈ N as r → 0. But examining the definition of φv, we see that we can identify

φv − φ with the graph of vC , and so (5.2.9) holds if, and only if,

|∇jvC | = O(rµ−j),

for j ∈ N as r → 0. But then by definition of vC this is equivalent to

|∇jv| = O(ρµ−j),

for j ∈ N as ρ→ 0, that is, v ∈ Cj
µ(V̂ ) for all j ∈ N. So we see that the moduli space

of CS Cayley deformations of Y in X can be identified with the kernel of (5.2.8).
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5.3 Cayley deformations of a CS Cayley submani-

fold

In this section we prove Theorem 5.3.3 which gives the expected dimension of the

moduli space of CS Cayley deformations of a conically singular Cayley submanifold

Y in a Spin(7)-manifold X in terms of the index of a linear elliptic operator acting

on weighted sections of the normal bundle of Ŷ (the nonsingular part of Y ) in X.

Similar to the proof of Theorem 3.2.6, which was an analogous result for compact

Cayley submanifolds, we first prove in Lemma 5.3.1 that the operator F̂ defined in

Proposition 5.2.5 is a smooth map of weighted Sobolev spaces. We then prove a

weighted elliptic regularity result for the operator F̂ in Proposition 5.3.2. Finally,

these results combined with the Fredholm theory of Theorem 4.3.2 will allow us to

prove Theorem 5.3.3.

The following lemma is similar to [23, Thm 5.1] and [37, Prop 6.9], and is an extension

of Lemma 3.2.4 to conically singular Cayley submanifolds.

Lemma 5.3.1. Let Y be a conically singular Cayley submanifold of a Spin(7)-manifold

X. Let F̂ be the operator defined in Proposition 5.2.5. Then we can write

F̂ (v)(x) = Dv(x) + Q̂(x, v(x),∇v(x)), (5.3.1)

for x ∈ Ŷ , where

Q̂ : {(x, y, z) | (x, y) ∈ V̂ , z ∈ νx(Ŷ )⊗ T ∗x Ŷ } → E,

is smooth, D was defined in Proposition 3.2.3 and Q̂(v)(x) := Q̂(x, v(x),∇v(x)) is a

section of E. Let µ > 1. Then for each k ∈ N, for v ∈ Ck+1
µ (V̂ ) with ‖v‖C1

1
sufficiently

small, there exist constants Ck > 0 so that

‖Q̂(v)‖Ck2µ−2
≤ Ck‖v‖2

Ck+1
µ
, (5.3.2)

and if v ∈ Lpk+1,µ(V̂ ) with ‖v‖C1
1

sufficiently small, with k > 1 + 4/p, there exist

constants Dk > 0 such that

‖Q̂(v)‖p,k,2µ−2 ≤ Dk‖v‖2
p,k+1,µ. (5.3.3)
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Moreover, we may deduce that

F̂ : Lpk+1,µ(V̂ )→ Lpk,µ−1(E), (5.3.4)

is a smooth map of Banach spaces for any 1 < p <∞ and k ∈ N with k > 1 + 4/p.

Proof. By definition of conically singular, we can split Y into a compact piece K,

where we see similarly to Lemma 3.2.4 that the estimate (5.3.2) holds, and a piece

diffeomorphic to a cone, which is where we must check how F̂ behaves as ρ → 0,

where ρ is a radius function for Ŷ . Making the compact piece slightly larger, using

the definition of F̂ , we may estimate F̂ by estimating F̂C , the operator on the cone

defined by

F̂C(v + vφ)(r, l) = F̂ (v)(Ψ(r, l)),

where vφ is the normal vector field on C that describes φ(C) as described in the proof

of Proposition 5.2.4, where we are using the notation of Definition 5.2.2. Define Q̂C

analogously by

F̂C(v + vφ)(r, l) = D(v + vφ)(r, l) + Q̂C(r, l, (v + vφ)(r, l),∇(v + vφ)(r, l)).

By definition of Q̂ and Q̂C , we see that

Q̂(r, l, v,∇v) = Q̂C(r, l, v + vφ,∇(v + vφ))− Q̂C(r, l, vφ,∇vφ), (5.3.5)

and so to estimate Q̂ and its derivatives, it suffices to estimate the right hand side of

Equation (5.3.5). Notice that since for each (r, l) ∈ C we can think of Q̂C as a map

νr,l(C)× νr,l(C)⊗ T ∗r,lC → Er,l,

and so we can make sense of a Taylor expansion of Q̂ around points of the form

(r, l, y, z), for y ∈ νr,l(C) and z ∈ νr,l(C)⊗ T ∗r,lC. Abusing notation slightly, write

∂Q̂C

∂y
(r, l, y, z),
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for derivative of Q̂C in the y direction at (r, l, y, z), and adopt similar notation for the

derivative in the z direction and the higher derivatives. Then we have that

Q̂C(r, l, y + y0, z + z0) = Q̂C(r, l, y0, z0) +
∂Q̂C

∂y
(r, l, y0, z0)y +

∂Q̂C

∂z
(r, l, y0, z0)z

+
1

2

∂2Q̂C

∂y2
(r, l, ty + y0, tz + z0)(y, y)

+
∂2Q̂C

∂y∂z
(r, l, ty + y0, tz + z0)(y, z)

+
1

2

∂2Q̂C

∂z2
(r, l, ty + y0, tz + z0)(z, z), (5.3.6)

for some t ∈ [0, 1]. We would like to estimate the derivatives of Q̂C . Since Q̂ is smooth

in all of its variables, this is possible as long as we restrict the domain of Q̂C to a

compact set. However, we are working on a cone (with its singular point removed)

so this isn’t possible. We may, however, fix r = r0, for some r0 ∈ (0, ε), perform

our estimates, and use the definition of F̂C and Q̂C to study the behaviour of the

estimates we find as we let r vary. Recall the action of R+ on νR8(C) that was defined

in the proof of Proposition 5.2.3, and indeed the tubular neighbourhood map that we

constructed in this proof, which forms part of the operator F̂C that we are currently

studying. By construction, we can see that

|F̂C(v(r, l))|r =
∣∣∣F̂C (r0

r
· v(r, l)

)∣∣∣
r0
,

where | · |r means that we are taking the norm at the point r. We may deduce that

|∇kQ̂C(r, lv + vφ,∇(v + vφ))|r = r−k
∣∣∣Q̂C

(
r0, l,

r0

r
· (v + vφ),∇r0

r
· (v + vφ)

)∣∣∣
r0
.

We also have that by construction∣∣∣∇k r0

r
· v(r, l)

∣∣∣
r0

=

(
r

r0

)k−1

|∇kv(r, l)|r.

Since Q̂C has no linear parts, we have that by equation (5.3.6),

Q̂C(r, l, v + vφ,∇(v + vφ))− Q̂C(r, l, vφ,∇vφ) ≤ 1

2

∂2Q̂C

∂y2
(r, l, tv + vφ,∇(tv + vφ))(v, v)

+
∂2Q̂C

∂y∂z
(r, l, tv + vφ,∇(tv + vφ))(v,∇v) +

1

2

∂2Q̂C

∂z2
(r, l, tv + vφ,∇(tv + vφ))(∇v,∇v),

(5.3.7)
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for some t ∈ [0, 1].

Consider
∂2Q̂C

∂y2
(r0, l, (tv + vφ)(r0, l),∇(tv + vφ)(r0, l)).

Then by taking the supremum over the closed sets l ∈ L and v with |v(r0, l)|r0,l +

|∇v(r0, l)|r0,l ≤ δ, which is possible as long as we take δ sufficiently small, we may

bound this expression, as well as the other coefficients of Equation (5.3.7). Using the

scale equivariance properties of Q̂C described above, we deduce that as long as ‖v‖C1
1

is small, we have that

|Q̂C(r, l, v + vφ,∇(v + vφ))− Q̂C(r, l, vφ,∇vφ)|r ≤ C0(r−1|v|r + |∇v|r)2.

Therefore

r2−2µ|Q̂C(r, l, v + vφ,∇(v + vφ))− Q̂C(r, l, vφ,∇vφ)|r ≤ C0r
2−2µ(r−1|v|r + |∇v|r)2

= C0‖v‖2
C1
µ
. (5.3.8)

Finally, we can take k derivatives of Equation (5.3.7), which will give us a polynomial

quadratic in v and its derivatives, whose coefficients depend on between two and k+ 2

derivatives of Q̂C , the C1
1 -norm of vφ and δ as above. We can estimate these coefficients

as we did above. We will find that

|∇k(Q̂C(r, l, v+vφ,∇(v+vφ))−Q̂C(r, l, vφ,∇vφ))| ≤ C

(∑
j1,j2

rj1−1rj2−1

rk
|∇j1v||∇j2v|

)
,

and since

rk−(2µ−2)rj1−1rj2−1r−k = rj1−µrj2−µ,

we may deduce that

rk−(2µ−2)|∇k(Q̂C(r, l, v + vφ,∇(v + vφ))− Q̂C(r, l, vφ,∇vφ))| ≤ Ck‖v‖2
Ck+1
µ
,

and so we see that the estimate (5.3.2) holds. Finally, as long as µ > 1, we have that

Ck
2µ−2(E) ⊆ Ck

µ−1(E). Similarly to the proof of Lemma 3.2.4, we can use (5.3.2) to

deduce (5.3.3) and that (5.3.4) is a smooth map of Banach spaces, as Q̂ is smooth.
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Now that we have described the behaviour of the operator F̂ close to the singular

point of the conically singular manifold Ŷ , we will prove a weighted elliptic regularity

result for normal vector fields in the kernel of F̂ .

Proposition 5.3.2. Let Y be a conically singular Cayley submanifold of a Spin(7)-

manifold X. Let F̂ be the map defined in Proposition 5.2.5. Then

{v ∈ C∞µ (V̂ ) | F̂ (v) = 0} ∼= {v ∈ Lpk+1,µ(V̂ ) | F̂ (v) = 0},

for any µ ∈ (1, 2)\D, 1 < p <∞ and k ∈ N satisfying k > 1 + 4/p. Here D is the set

of exceptional weights given by applying Theorem 4.3.2 to the linear part of F̂ .

Proof. We will first show that if v ∈ C∞µ (V̂ ) satisfying F̂ (v) = 0, then v ∈ Lpk+1,µ. This

is a little trickier than it seems, since we have that for any ε > 0, C∞µ (V̂ ) ⊆ Lpk,µ−ε(V̂ ),

which is weaker than what we require. We will show that if v ∈ Lpk+1,µ−ε(V̂ ), for ε > 0

sufficiently small, satisfies F̂ (v) = 0, then we may deduce that v ∈ Lpk+1,µ(V̂ ). Recall

that in Lemma 5.3.1, we saw that we could write

F̂ (v) = Dv + Q̂(v),

where D was defined in Proposition 3.2.3, and Q̂ is nonlinear. It can be shown that

D satisfies the hypotheses of Theorem 4.3.2 (we will see this explicitly in Section 6.2.2

below) and so there exists a discrete set D so that

D : Lpk+1,λ(νX(Ŷ ))→ Lpk,λ−1(E), (5.3.9)

is Fredholm as long as λ /∈ D. Take 0 < ε < (µ−1)/2 small enough so that [µ− ε, µ]∩

D = ∅. Let v ∈ Lpk+1,µ−ε(V̂ ) and suppose that F̂ (v) = 0. Since (5.3.9) is Fredholm

when λ = µ− ε, we can write

Lpk,µ−ε−1(E) = D(Lpk+1,µ−ε(νX(Ŷ )))⊕ Ôµ−ε,

where Ôµ−ε is finite-dimensional and

Ôµ−ε ∼= Cokerµ−εD,
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where CokerλD denotes the cokernel of (5.3.9). Since [µ− ε, µ]∩D = ∅, we know that

(see [35, Lem 7.1])

Cokerµ−εD = CokerµD. (5.3.10)

Now since F̂ (v) = 0, we have that Dv = −Q̂(v), and so Q̂(v) is orthogonal to

Cokerµ−εD. Also Q̂(v) ∈ Lpk,2µ−2−2ε(E) ⊆ Lpk,µ−1(E) by Lemma 5.3.1 since v ∈

Lpk+1,µ−ε(V̂ ) and by our choice of ε. Therefore we have that Dv = Q̂(v) ∈ Lpk,µ−1(V̂ ),

and it is orthogonal to CokerµD by (5.3.10). Therefore there exists v̄ ∈ Lpk+1,µ(V̂ )

with Dv = Dv̄. But then we must have that v − v̄ ∈ Kerµ−εD = KerµD, since

[µ− ε, µ] ∩ D = ∅, and so v ∈ Lpk+1,µ(V̂ ), as required.

Conversely, let v ∈ Lpk+1,µ(V̂ ) satisfy F̂ (v) = 0. Here we perform a trick similar to

that in [28, Prop 4.6]. Taylor expanding F̂ (v) around zero we can write F̂ (v) as a

polynomial in v and ∇v. Differentiating and gathering terms we can write

∇F̂ (v) = L(x, v(x),∇v(x))∇2v + E(x, v(x),∇v(x)).

Consider the second order elliptic linear operator

Lv : νX(Ŷ )→ E,

w 7→ L(x, v(x),∇v(x))∇2w.

By Sobolev embedding, we know that v ∈ C l
µ(V̂ ), for l ≥ 2 by choice of p and k, and

therefore the coefficients of the linear operator Lv lie in C l−1
loc (V̂ ). Local regularity for

linear elliptic operators with coefficients in Hölder spaces (a nice statement is given

in [25, Thm 1.4.2], taken from [44, Thm 6.2.5]) tells us that v ∈ C l+1
loc (V̂ ) which is

an improvement on the regularity of v, and so bootstrapping we may deduce that

v ∈ C∞loc(V̂ ). (This is why we must differentiate F̂ (v), to ensure that the coefficients of

the linear operator have enough regularity to improve the regularity of v.) Therefore

the coefficients of the operator Lv are smooth and so we may apply an estimate of

Lockhart and McOwen [35, Eq. 2.4] in combination with a change of coordinates

which tells us that

‖v‖p,k+2,µ ≤ C(‖Lvv‖p,k,µ−2 + ‖v‖p,0,µ). (5.3.11)
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Since F̂ (v) = 0 = ∇F̂ (v), we have that

Lvv = −E(x, v(x),∇v(x)).

Since E(x, v(x),∇v(x)) is a polynomial in v and ∇v with coefficients that depend on

the C1
1 -norm of v, and v ∈ C1

µ(V̂ ) and Lpk+1,µ(V̂ ), we have that E(x, v(x),∇v(x)) ∈

Lpk,µ−1(E) ⊆ Lpk,µ−2(E). Therefore Equation (5.3.11) tells us that v ∈ Lpk+2,µ(V̂ ), from

which we may deduce that v is in fact in C∞µ (V̂ ).

We may finally deduce the main theorem of this section, on the expected dimension of

the moduli space of Cayley CS deformations of a CS Cayley submanifold of a Spin(7)-

manifold X. This theorem is the analogy of Theorem 3.2.6 for this moduli space, and

the proof is similar.

Theorem 5.3.3. Let Y be a CS Cayley submanifold at x̂ with cone C and rate µ ∈

(1, 2)\D of a Spin(7)-manifold X. Let D denote the first order elliptic differential

operator defined in (3.2.6). Then there exist a smooth manifold K̂0, which is an open

neighbourhood of 0 in the kernel of (5.3.12), and a smooth map ĝ2 from K̂0 into

the cokernel of (5.3.12) with ĝ2(0) = 0 so that an open neighbourhood of Y in the

moduli space of CS Cayley deformations of Y in X, M̂µ(Y ) from Definition 5.2.5, is

homeomorphic to an open neighbourhood of 0 in Ker ĝ2.

Moreover, the expected dimension of M̂µ(Y ) is given by the index of the linear elliptic

operator

D : Lpk+1,µ(νX(Ŷ ))→ Lpk,µ−1(E). (5.3.12)

If the cokernel of (5.3.12) is {0} then M̂µ(Y ) is a smooth manifold near Y of the

same dimension as the kernel of (5.3.12). Here D is the set of weights µ ∈ R for

which (5.3.12) is not Fredholm from Theorem 4.3.2.

Proof. By Propositions 5.2.5 and 5.3.2, we can identify M̂µ(Y ) near Y with the kernel

of the operator

F̂ : Lpk+1,µ(V̂ )→ Lpk,µ−1(E).
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The linearisation of F̂ at zero is the operator

D : Lpk+1,µ(νX(Ŷ ))→ Lpk,µ−1(E), (5.3.13)

which is elliptic. Since µ /∈ D, (5.3.13) is Fredholm. Therefore we may decompose

Lpk+1,µ(νX(Ŷ )) = K̂ ′ ⊕ X̂ ′,

where K̂ ′ is the kernel of (5.3.13) and X̂ ′ is closed, and

Lpk,µ−1(E) = D(Lpk+1,µ(νX(Ŷ )))⊕ Ôµ,

where Ôµ is the finite-dimensional obstruction space and

Ôµ ∼= Lpk,µ−1(E)/D(Lpk+1,µ(νX(Ŷ ))) =: CokerµD.

Then the map

F̂ : Lpk+1,µ(V̂ )× Ôµ → Lpk,µ−1(E),

(v, w) 7→ F̂ (v) + w,

has

dF̂ |(0,0)(v, w) = Dv + w, (5.3.14)

which is surjective. Write K̂ = K̂ × {0} for the kernel of (5.3.14). We then have that

Lpk+1,µ(νX(Ŷ ))× Ôµ = K̂ ⊕ (X̂ ′ × Ôµ).

Now we may apply the implicit function theorem 3.2.5 to find K̂0 ⊆ K̂ containing

zero, X̂ ′0 ⊆ X̂ ′, Ô0 ⊆ Ôµ and a smooth map ĝ = (ĝ1, ĝ2) : K̂0 → X̂ ′0 × Ô0 so that

F̂−1(0) ∩ (K̂0 × X̂ ′0 × Ô0) = {(x, ĝ1(x), ĝ2(x)) |x ∈ K̂0}.

So we may identify the kernel of F̂ , and therefore M̂µ(Y ) with the kernel of ĝ2 : K̂0 →

Ô0, a smooth map between finite-dimensional spaces (since (5.3.13) is Fredholm).

Sard’s theorem tells us that the expected dimension of the kernel of ĝ2 is given by the

index of the operator (5.3.13).
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5.4 Cayley deformations of a CS complex surface

In this section we prove Theorem 5.4.4 which gives the expected dimension of the

moduli space of CS Cayley deformations of a two-dimensional conically singular com-

plex submanifold N of a Calabi–Yau four-fold M in terms of the index of the operator

∂̄ + ∂̄∗ acting on weighted sections of a vector bundle over N̂ (the nonsingular part of

N). Similar to the proof of Theorem 3.3.4, which was an analogous result for compact

complex surfaces, we have already seen in Proposition 5.2.5 that the moduli space of

CS Cayley deformations of N in M can be identified with the kernel of a nonlinear

partial differential operator F̂ . We can use the operator F̂ to construct an operator

F̂ cx in Proposition 5.4.1, whose kernel is isomorphic to the kernel of F̂ , but whose

linear part takes the form of the operator ∂̄ + ∂̄∗. We will then give analytic results,

Lemma 5.4.2 and Proposition 5.4.3, on extending the map F̂ cx to act on weighted

sections of Sobolev spaces and an elliptic regularity result for F̂ cx respectively. These

results follow immediately from Lemma 5.3.1 and Proposition 5.3.2, their counterparts

for the operator F̂ . Finally, we prove Theorem 5.4.4, which can be proved in exactly

the same way as Theorem 5.3.3 or simply by an application of this theorem.

5.4.1 Deformation problem

We would like to study the moduli space given in Definition 5.2.5 for the CS Cayley

submanifold N that is a complex submanifold of a Calabi–Yau four-fold M . We

will now identify this moduli space with the kernel of a nonlinear partial differential

operator. The following proposition is the analogy of Proposition 3.3.3 for a CS

complex surface.

Proposition 5.4.1. Let N be a CS complex surface at x̂ with cone C and rate µ ∈

(1, 2) inside a Calabi-Yau four-fold M . Write N̂ := N\{x̂}. Then the moduli space of

CS Cayley deformations of N in M , M̂µ(N), can be identified with the kernel of the



140 CHAPTER 5. CONICALLY SINGULAR DEFORMATIONS

operator

F̂ cx : C∞µ (Û)→ C∞loc(Λ
0,1N̂ ⊗ ν1,0

M (N̂)),

where Û ⊆ ν1,0
M (N̂) ⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂) is the image of V̂ ⊗ C from the tubular neigh-

bourhood theorem 5.2.4 under the isomorphism given in Proposition 3.3.1, and F̂ cx is

defined so that the following diagram commutes

C∞(U) C∞(Λ0,1N ⊗ ν1,0
M (N))

C∞(V ⊗ C) C∞(E ⊗ C)

F cx

F

where F̂ is the operator defined in Proposition 5.2.5 and we use the isomorphisms

given in Propositions 3.3.1 and 3.3.2.

Moreover, the linearisation of F̂ cx at zero is the operator

∂̄ + ∂̄∗ : C∞µ (ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ C∞loc(Λ
0,1N̂ ⊗ ν1,0

M (N̂)). (5.4.1)

Proof. By Proposition 5.2.5 we can identify the moduli space of CS Cayley deforma-

tions of N in M with the kernel of F̂ , which is the same as the kernel of F̂ cx.

Since the linearisation of the operator of F̂ is given by the operator D defined in

Proposition 3.2.3, the local argument of Proposition 3.3.3 still holds, and so we see

that the linearisation of F̂ cx at zero is given by the operator (5.4.1) as claimed.

5.4.2 Cayley deformations of a CS complex surface

In this section, we will give analogies of the results of Section 5.3, which were on

analytic properties of the operator F̂ defined in Proposition 5.2.5, for the operator

F̂ cx defined in Proposition 5.4.1. Due to the relation between the operators F̂ and F̂ cx

noted in the proof of Proposition 5.4.1, these results follow immediately from their

counterparts.
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Lemma 5.4.2. Let N be a conically singular complex surface inside a Calabi–Yau

four-fold M . Let F̂ cx be the operator defined in Proposition 5.4.1. Then we can write

F̂ cx(w)(x) = (∂̄ + ∂̄∗)w(x) + Q̂cx(x,w(x),∇w(x)), (5.4.2)

for x ∈ N̂ , where

Q̂cx : {(x, y, z) | (x, y) ∈ Û , z ∈
[
ν1,0
x (N̂)⊕ Λ0,2

x N̂ ⊗ ν1,0
x (N̂)

]
⊗ T ∗x N̂}

→ Λ0,1N̂ ⊗ ν1,0
M (N̂),

is smooth and Q̂cx(w)(x) := Q̂cx(x,w(x),∇w(x)) is a section of Λ0,1N̂ ⊗ ν1,0
M (N̂). Let

µ > 1. Then for each k ∈ N, for w ∈ Ck+1
µ (Û) with ‖w‖C1

1
sufficiently small, there

exist constants Ck > 0 so that

‖Q̂cx(w)‖Ck2µ−2
≤ Ck‖w‖2

Ck+1
µ
, (5.4.3)

and if w ∈ Lpk+1,µ(Û) with ‖w‖C1
1

sufficiently small, there exist constants Dk > 0 such

that

‖Q̂cx(w)‖p,k,2µ−2 ≤ Dk‖w‖2
p,k+1,µ. (5.4.4)

Moreover, we may deduce that

F̂ cx : Lpk+1,µ(Û)→ Lpk,µ−1(E), (5.4.5)

is a smooth map of Banach spaces for any 1 < p <∞ and k ∈ N with k > 1 + 4/p.

Proof. Since F̂ cx is defined by composing the operator F̂ defined in Proposition 5.2.5

with isomorphisms of vector bundles, the estimates (5.4.3) and (5.4.4) follow from the

estimates (5.3.2) and (5.3.3) respectively since the isomorphisms defined in Proposi-

tions 3.3.1 and 3.3.2 are isometries.

Moreover, since these isomorphisms are smooth, the claim that (5.4.5) is a smooth map

of Banach spaces follows from the corresponding fact for F̂ from Lemma 5.3.1.

We may now give a weighted elliptic regularity result for F̂ cx.
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Proposition 5.4.3. Let N be a conically singular complex surface inside a Calabi–Yau

four-fold M . Let F̂ cx be the map defined in Proposition 5.4.1. Then

{w ∈ C∞µ (Û) | F̂ cx(w) = 0} ∼= {w ∈ Lpk+1,µ(Û) | F̂ cx(w) = 0},

for any µ ∈ (1, 2)\D, 1 < p <∞ and k ∈ N. Here D is the set of exceptional weights

given by applying Theorem 4.3.2 to the linear part of F̂ cx.

Proof. This follows from Proposition 5.3.2 in combination with the fact that the kernels

of F̂ , defined in Proposition 5.2.5, and F̂ cx are isomorphic by definition, and the

isomorphism given in Proposition 3.3.1 is an isometry.

We deduce the following theorem on the moduli space of CS Cayley deformations of a

CS complex surface inside a Calabi–Yau four-fold. This theorem can be proved by an

identical argument to the proof of Theorem 5.3.3, but we will deduce it as a corollary

of Theorem 5.3.3.

Theorem 5.4.4. Let N be a CS complex surface at x̂ with cone C and rate µ ∈

(1, 2)\D of a Calabi–Yau four-fold M . Then the expected dimension of M̂µ(N) is

given by the index of the linear elliptic operator

∂̄ + ∂̄∗ : Lpk+1,µ(ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ Lpk,µ−1(Λ0,1N̂ ⊗ ν1,0
M (N̂)). (5.4.6)

Moreover if the cokernel of (5.4.6) is {0} then M̂µ(N) is a smooth manifold near N

of the same dimension as the (complex) dimension of the kernel of (5.4.6). Here D is

the set of weights µ ∈ R for which (5.3.12) is not Fredholm from Theorem 4.3.2.

Proof. By Theorem 5.3.3, the expected dimension of M̂µ(N) is given by the index of

the operator (5.3.12). Since, by Proposition 3.3.3 we can consider the operator (5.4.6)

as the composition of the operator (5.3.12) with the isomorphisms from Propositions

3.3.1 and 3.3.2, which are isometries, we may deduce that the index of (5.3.12) and

(5.4.6) are equal.
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5.5 Complex deformations of a CS complex surface

In this section, we will compare the CS complex and Cayley deformations of a CS

complex surface inside a four-dimensional Calabi–Yau manifold. In Definition 5.5.1

we formally define the moduli space of CS complex deformations of a conically singular

complex surface N inside a Calabi–Yau four-fold M . We will then identify this moduli

space with the kernel of a partial differential operator in Proposition 5.5.1. The local

arguments of Section 3.4.2 still hold and so we may deduce, similarly to Theorem

3.4.7 on the moduli space of complex deformations of a compact complex surface in a

Calabi–Yau four-fold, that the moduli space of CS complex deformations of N in M

is a smooth manifold near N . A technical result in Proposition 5.5.3 will allow us to

deduce that CS complex and Cayley deformations of N in M are the same.

Definition 5.5.1. Let N be a CS complex surface at x̂ with rate µ and cone C inside

a Calabi–Yau manifold M with respect to some Spin(7)-coordinate system χ, and

denote by Ĉ the tangent cone of N . Write N̂ := N\{x̂}. Define the moduli space of

conically singular (CS) complex deformations of N in M , M̂cx
µ (N), to be the set of CS

complex surfaces N ′ at x̂ with cone C, rate µ and tangent cone Ĉ of M so that there

exists a continuous family of topological embeddings ιt : N →M with ι0(N) = N and

ι1(N) = N ′, so that ιt(x̂) = x̂ for all t ∈ [0, 1] and so that ι̂t := ιt|N̂ is a smooth family

of embeddings N̂ → X with ι̂0(N̂) = N̂ and ι̂1(N̂) = N̂ ′ := N ′\{x̂}.

We will now identify the moduli space of CS complex deformations of a CS complex

surface in a Calabi–Yau manifold M with the kernel of a nonlinear partial differential

operator.

Proposition 5.5.1. Let N be a conically singular complex surface at x̂ with rate µ and

cone C inside a Calabi–Yau four-fold M . Write N̂ := N\{x̂}. Let V̂ ⊆ νM(N̂)⊗C be

the open set and Ξ̂ : V̂ → T̂ the diffeomorphism defined in the tubular neighbourhood

theorem 5.2.4. For v ∈ C∞loc(V̂ ) write Ξv := Ξ ◦ v, and define N̂v := Ξv(N̂). Then the

moduli space of CS complex deformations of N in M , M̂cx
µ (N), is isomorphic near N



144 CHAPTER 5. CONICALLY SINGULAR DEFORMATIONS

to the kernel of

Ĝ : C∞µ (V̂ ⊗ C)→ C∞loc(Λ
1N̂ ⊗ T ∗M |N̂ ⊗ C),

v 7→ ∗N̂ Ξ∗v(σ|N̂v), (5.5.1)

where σ was defined in Proposition 3.4.2. Moreover, the kernel of Ĝ is isomorphic to

the kernel of its linear part given by the map

C∞µ (νM(N̂)⊗ C)→ C∞loc(Λ
1,0N̂ ⊗ ν∗1,0M (N̂)⊕ Λ0,1N̂ ⊗ ν∗0,1M (N̂)),

v 7→ −∂∗(vyΩ)− ∂̄∗(vyΩ). (5.5.2)

The kernel of (5.5.2) is isomorphic to

{v ∈ C∞µ (ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂)) | ∂̄v = 0 = ∂̄∗w}. (5.5.3)

Proof. By definition of σ we see that normal vector fields in the kernel of Ĝ correspond

to complex deformations of N̂ , and a similar argument to Proposition 5.2.5 shows that

weighted smooth sections of νM(N̂)⊗ C give conically singular deformations of N̂ as

required. The linear part of Ĝ follows from Proposition 3.4.4, which was a local

argument, and similarly that the kernel of Ĝ is equal to the kernel of its linear part

follows from the local argument of Lemma 3.4.6. Finally, that the kernel of (5.5.2) is

equal to (5.5.3) follows from Proposition 3.4.4, where we proved that

∂∗(vyΩ) = 0 ⇐⇒ ∂̄(π1,0(v)) = 0,

where π1,0 : νM(N̂)⊗ C→ ν1,0
M (N̂) and the isomorphism of Proposition 3.3.1

ν0,1
M (N̂) ∼= Λ0,2N̂ ⊗ ν1,0

M (N̂).

This proposition allows us to prove that the CS complex deformations of a conically

singular complex surface are unobstructed. This theorem is a generalisation of Theo-

rem 3.4.7 to conically singular submanifolds.
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Theorem 5.5.2. Let N be a conically singular complex surface at x̂ with rate µ ∈

(1, 2) and cone C inside a Calabi–Yau four-fold M . The moduli space of CS complex

deformations of N in M , M̂cx
µ (N) given in Definition 5.5.1, is a smooth manifold of

dimension

dimCKer ∂̄ + dimCKer ∂̄∗ = 2dimCKer ∂̄, (5.5.4)

where

∂̄ : C∞µ (ν1,0
M (N̂))→ C∞loc(Λ

0,1N̂ ⊗ ν1,0
M (N̂)), (5.5.5)

∂̄∗ : C∞µ (Λ0,2N̂ ⊗ ν1,0
M (N̂))→ C∞loc(Λ

0,1N̂ ⊗ ν1,0
M (N̂)). (5.5.6)

Proof. By Proposition 5.5.1 the moduli space of CS complex deformations of N in M

can be identified with the kernels of the operators (5.5.5) and (5.5.6). Equation (5.5.4)

follows from Corollary 3.4.5.

To compare CS complex and Cayley deformations of a CS complex surface, we require

the following result.

Proposition 5.5.3. Let N be a CS complex surface at x̂ with cone C and rate µ ∈

(1, 2) in a Calabi–Yau four-fold M . Write N̂ := N\{x̂}. Then w ∈ L2
k+1,µ(ν1,0

M (N̂)⊕

Λ0,2N̂ ⊗ ν1,0
M (N̂)) is an infinitesimal CS Cayley deformation of N̂ if, and only if, it is

an infinitesimal complex deformation of N̂ . That is, (∂̄ + ∂̄∗)w = 0 if, and only if,

∂̄w = 0 = ∂̄∗w.

Proof. Suppose that w ∈ L2
k+1,µ(ν1,0

M (N̂) ⊕ Λ0,2N̂ ⊗ ν1,0
M (N̂)) satisfies ∂̄w = −∂̄∗w for

µ ∈ (1, 2). Then ∂̄∗∂̄w = 0. We will check whether∫
N̂

〈∂̄u, v〉 volN̂ =

∫
N̂

〈u, ∂̄∗v〉 volN̂ ,

holds for u ∈ L2
1,µ(ν1,0

M (N̂)⊕Λ0,2N̂⊗ν1,0
M (N̂)) and v ∈ L2

1,µ−1(ν1,0
M (N̂)⊕Λ0,2N̂⊗ν1,0

M (N̂)),

that is, whether the integrals on both sides converge. Let ρ be a radius function for

N . We have that∫
N̂

〈∂̄u, v〉 volN̂ =

∫
N̂

〈ρ1−µ−2∂̄u, ρµ+3−2v〉 volN̂ ≤ ‖∂̄u‖2,µ−1‖v‖2,−µ−3,
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by Hölder’s inequality. This is finite since

|ρµ+3v| ≤ |ρ1−µv|,

since µ ∈ (1, 2). Similarly,∫
N̂

〈u, ∂̄∗v〉 volN̂ =

∫
N̂

〈ρ−µ−2u, ρµ+4−2∂̄∗v〉 volN̂ ≤ ‖u‖2,µ‖∂̄∗v‖2,−µ−4,

which again is finite since

|ρµ+4∂̄∗v| ≤ |ρ2−µ∂̄∗v|,

for µ ∈ (1, 2). Therefore

‖∂̄w‖2
L2 =

∫
N̂

〈∂̄w, ∂̄w〉 volN̂ =

∫
N̂

〈w, ∂̄∗∂̄w〉 volN̂ = 0,

and so ∂̄w = 0.

This allows us to find that CS complex and Cayley deformations of a CS complex

surface in a Calabi–Yau four-fold are the same.

Corollary 5.5.4. Let N be a CS complex surface inside a Calabi–Yau four-fold M .

Then the moduli space of CS Cayley deformations of N in M is isomorphic to the

moduli space of CS complex deformations of N in M .

Proof. There are no infinitesimal CS Cayley deformations of N by Proposition 5.5.3,

i.e., no w ∈ C∞µ (ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂)) satisfying

∂̄w = −∂̄∗w,

where ∂̄w 6= 0. Comparing the expected dimension of the moduli space of CS Cayley

deformations of N in M , computed in Theorem 5.4.4, to the dimension of the moduli

space of CS complex deformations of N in M , computed in Theorem 5.5.2 we see that

these spaces must be the same, since any CS complex deformation of N is a Cayley

deformation of N .



Chapter 6

Index theory: Calculations and

comparisons

In this chapter, we apply the theory of Chapter 4 to the first order linear elliptic

operators D and ∂̄+ ∂̄∗ featured in the analysis of Chapters 3 and 5. We also explicitly

calculate the dimension of the space of infinitesimal complex and Cayley deformations

of three two-dimensional complex cones in C4.

6.1 Introduction

Let Y be a CS Cayley submanifold of a Spin(7)-manifold X with nonsingular part Ŷ

and let N be a CS complex surface inside a Calabi–Yau manifold M with nonsingular

part N̂ . In this chapter, we will be interested in the index of the operators

D : Lpk+1,µ(νX(Ŷ ))→ Lpk,µ−1(E), (6.1.1)

defined in Proposition 3.2.3 on sections with compact support and extended by density

to the above spaces, and

∂̄ + ∂̄∗ : Lpk+1,µ′(ν
1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ Lpk,µ′−1(Λ0,1N̂ ⊗ ν1,0
M (N̂)). (6.1.2)

147
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In Section 6.2 we will explain why we can apply Theorem 4.3.2 to (6.1.1) and (6.1.2)

to see that they are Fredholm if, and only if, µ ∈ R\D and µ′ ∈ R\D′ respectively for

some discrete sets D and D′ of exceptional weights. In Propositions 6.2.1 and 6.2.2 we

will describe the sets D and D′ of exceptional weights in terms of eigenproblems on

the links of Cayley and complex cones. Propositions 6.2.1 and 6.2.2 both take roughly

the following form.

Proposition. Suppose that Y is a CS Cayley submanifold of a Spin(7)-manifold with

cone C and let µ ∈ R. Then µ ∈ D if, and only if, there exists a nontrivial normal

vector field v on the link L of C satisfying

DLv = −µv,

where DL is a first order linear differential operator on L and D is the set of exceptional

weights for the operator (6.1.1) or (6.1.2).

In Section 6.3, we will consider deformations of two-dimensional complex cones in C4,

both as a Cayley submanifold and a complex submanifold of C4. In particular, we

will consider Cayley deformations of the cone that are themselves cones. The (real)

link of such a complex cone is an associative submanifold of S7 with its nearly parallel

G2-structure inherited from the Euclidean Spin(7)-structure on C4, and so deforming

the cone as a complex or Cayley cone in C4 is equivalent to deforming the link of the

cone as an associative submanifold. Homogeneous associative submanifolds of S7 were

classified by Lotay [38], using the classification of homogeneous submanifolds of S6 of

Mashimo [41]. The deformation theory of these submanifolds was studied by Kawai

[30], who explicitly calculated the dimension of the space of infinitesimal associative

deformations of these explicit examples using techniques from representation theory.

Motivated by these calculations, we will apply the analysis of Chapter 5 to compute

the dimension of the space of infinitesimal Cayley conical deformations of the complex

cones with these links, and check that these calculations match. We will be able to

see explicitly which infinitesimal deformations correspond to complex deformations of

the cone and which are Cayley but not complex deformations. In particular we will
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see that complex infinitesimal deformations and Cayley infinitesimal deformations of

a two-dimensional complex submanifold of a Calabi–Yau four-fold are not the same in

general.

In Section 6.4, we will apply the Atiyah–Patodi–Singer index theorem 4.4.1 to the

operator (6.1.2). Using the version of the Atiyah–Patodi–Singer theorem deduced

in Proposition 4.4.5, we will prove Theorem 6.4.1 which allows us to compare the

dimension of the moduli space of CS complex deformations of a conically singular

complex surface to what we will think of as the dimension of the moduli space of all

complex deformations of a CS complex surface in a Calabi–Yau four-fold based on

Kodaira’s theorem 3.1.1. We will then proceed to perform some calculations of the

quantities appearing in this theorem for some examples.

We will close this chapter, and this thesis, with some concluding remarks on the results

in this thesis and some ideas for future research in Section 6.5.

6.2 Finding the exceptional weights for the opera-

tors D and ∂̄ + ∂̄∗

In this section we will find the set D of exceptional weights for which the linear elliptic

operators (6.1.1) and (6.1.2) that appeared in Chapter 5 are not Fredholm. To do this

we will study these operators acting on cones in R8. We will see that the exceptional

weights are actually eigenvalues for differential operators on the links of these cones.

6.2.1 Nearly parallel G2 structure on S7

We can consider R8 as a cone with link S7. Let (Φ0, g0) be the Euclidean Spin(7)-

structure (as given in Definition 1.2.3). Define a three-form ϕ on S7 by the following
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relation:

Φ0|(r,p) = r3dr ∧ ϕ|p + r4 ∗ ϕ|p. (6.2.1)

Then (ϕ, g) is a G2-structure on S7 (here g is the standard round metric on S7). Notice

that this G2-structure is not torsion-free, however, since Φ0 is closed we have that

dϕ = 4 ∗ ϕ. (6.2.2)

G2-structures (ϕ, g) satisfying (6.2.2) are called nearly parallel.

6.2.2 Exceptional weights for the operator D

Let Y be a CS Cayley submanifold at x̂ with rate µ and cone C of a Spin(7)-manifold

X and write Ŷ := Y \{x̂}. Consider the linear elliptic operator on Ŷ given by

D : C∞0 (νX(Ŷ ))→ C∞0 (E),

v 7→
4∑
i=1

π7(ei ∧ (∇⊥eiv)[), (6.2.3)

where {e1, e2, e3, e4} is an orthonormal frame for T Ŷ with dual coframe {e1, e2, e3, e4},

Λ2
7 is the seven-dimensional irreducible representation of Spin(7) on two-forms with

π7 : Λ2X → Λ2
7 and Λ2

7|Ŷ = Λ2
+Ŷ ⊕ E.

We will now describe the set of exceptional weights for D in terms of an eigenvalue

problem on the link of C.

Proposition 6.2.1. Let Y be a CS Cayley submanifold at x̂ with cone C and rate µ

of a Spin(7)-manifold X. Write Ŷ := Y \{x̂}. Let DD denote the set of λ ∈ R for

which

D : Lpk+1,λ(νX(Ŷ ))→ Lpk,λ−1(E),

defined in (6.2.3) is not Fredholm.

Let L := C ∩ S7 be the link of the cone C, a submanifold of S7. Then λ ∈ DD if, and

only if, there exists v ∈ C∞(νS7(L)) so that

DLv = −λv, (6.2.4)
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where for {e1, e2, e3} an orthonormal frame for TL and ∇⊥ the connection on the

normal bundle of L in S7 induced by the Levi-Civita connection of the round metric

on S7,

DL : C∞(νS7(L))→ C∞(νS7(L)),

v 7→
3∑
i=1

ei ×∇⊥eiv, (6.2.5)

where × is the cross product on S7 induced from the nearly parallel G2-structure (ϕ, g)

defined by

g(u× v, w) = ϕ(u, v, w),

for any vector fields u, v, w on S7.

Remark. The operator DL can be defined on any associative submanifold of a G2-

manifold, that is, a manifold with torsion-free G2-structure. Normal vector fields

in its kernel correspond to infinitesimal associative deformations of the associative

submanifold. This can be deduced from the work of McLean [43, Thm 5-2], however the

operator first appears in this form in [1, Eqn 14]. Infinitesimal associative deformations

of an associative submanifold of S7 with its nearly parallel G2-structure, however,

satisfy (6.2.4) with λ = 1 as shown by Kawai [30, Lem 3.5]. Proposition 6.2.1 can be

considered as a different proof of this fact.

Proof. We can apply Theorem 4.3.2 to the operator D. Suppose that ρ is a radius

function for Y . Then since the given Spin(7)-structure on X approaches the Euclidean

Spin(7)-structure as we move close to the singular point of Y ,

ρ−1Dρ−1

is asymptotic to the translation invariant differential operator

r−1D0r
−1,

where D0 is defined similarly to D but using the Euclidean Spin(7)-structure pulled

back to X by a Spin(7)-coordinate system χ for X around x̂ (see Definition 5.2.1).
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From the discussion in Section 4.2.3, we see that λ ∈ DD if, and only if, there exists

a normal vector field v ∈ C∞(νL(S7)) satisfying

r−1D0(rλ−1v) = 0,

where since νrl,R8(C) ∼= νl,S7(L) for all r > 0 we can consider (r, l) 7→ (r, rλ−1v(l)) as a

normal vector field on the cone. Note also that the induced Euclidean metric on the

normal bundle of C in R8 takes the form r2h, where h is the metric on the normal

bundle of L in S7 induced from the round metric on S7.

Let {e1, e2, e3} denote an orthonormal frame for TL with dual coframe {e1, e2, e3}, and

denote by Φ0 the Euclidean Cayley form on R8 and ϕ the nearly parallel G2-structure

on S7 defined in (6.2.1). We compute that

D0(rλ−1v) = π7

(
dr ∧

(
∇⊥∂

∂r

rλ−1v
)[)

+
3∑
i=1

π7

(
rei ∧ (∇⊥ei

r
rλ−1v)[

)
= λrλ−2dr ∧ v[ + λrλ−2Φ0

(
∂

∂r
, v, · , ·

)
+

3∑
i=1

(
rλ−1ei ∧

(
∇⊥eiv

)[
+ rλ−3Φ0(ei,∇⊥eiv, · , · )

)
,

since ∇⊥∂
∂r

v = r−1v as the metric on the normal bundle is of the form r2h. Using the

definition of ϕ in (6.2.1), we find that

D0(rλ−1v) = λrλ−2dr ∧ v[ + λrλ+1ϕ(v, · , · )

+
3∑
i=1

(
rλ−1ei ∧ (∇⊥eiv)[ + rλdr ∧ ϕ(ei,∇⊥eiv, · ) + rλ+1 ∗ ϕ(ei,∇⊥eiv, · , · )

)
.

Now we wish to replace the musical isomorphism [ : νR8(C)→ ν∗R8(C) with the musical

isomorphism [L : νS7(L) → ν∗S7(L). Since the metric on νR8(C) is of the form r2h,

where h is a metric on νS7(L), we find that

D0(rλ−1v) = λrλdr ∧ v[L + λrλ+1ϕ(v, · , · )

+
3∑
i=1

(
rλ+1ei ∧ (∇⊥eiv)[L + rλdr ∧ ϕ(ei,∇⊥eiv, · ) + rλ+1 ∗ ϕ(ei,∇⊥eiv, · , · )

)
.
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Notice that E ∼= νS7(L) via the map

α 7→
(
∂

∂r
yα

)]L
,

where ]L : ν∗S7(L)→ νS7(L) is the musical isomorphism, with inverse map

v 7→ π7(dr ∧ v[L).

Therefore we see that

r−1D0(rλ−1v) = 0 ⇐⇒
(
∂

∂r
y r−1D0(rλ−1v)

)]L
= 0.

We find that (
∂

∂r
y r−1D0(rλ−1v)

)]L
= rλ−2

(
λv + ϕ(ei,∇⊥eiv, · )

]
L

)
.

Since by definition,

DLv = ei ×∇⊥eiv = ϕ(ei,∇⊥eiv, · )
]L ,

we see that λ ∈ DD if, and only if, there exists v ∈ C∞(νS7(L)) such that

DLv = −λv.

6.2.3 Exceptional weights for the operator ∂̄ + ∂̄∗

Let N be a CS complex surface with rate µ and cone C inside a Calabi–Yau four-fold

M , and write N̂ for its nonsingular part. In order to prove an analogous result to

Proposition 6.2.1 for the operator

∂̄ + ∂̄∗ : C∞0 (ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ C∞0 (Λ0,1N̂ ⊗ ν1,0
M (N̂)), (6.2.6)

we will need some preliminary facts about complex cones.

Definition 6.2.1. Let C be a complex cone in Cn+1, with real link L := C ∩ S2n+1.

Consider the Hopf projection p : S2n+1 → CP n. Define the complex link Σ of C to be

the image of L under the Hopf projection, i.e., Σ := p(L) ⊆ CP n.
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The real link of a complex cone C is a circle bundle over the complex link of C.

Thinking of L as S1 ×Σ, we can find a globally defined vector field on L that we can

think of as being tangent to S1 in this product.

Definition 6.2.2. Let C be a complex cone in Cn+1, and denote by J the complex

structure on Cn. The Reeb vector field is defined to be

ξ := J

(
r
∂

∂r

)
.

Notice that |ξ|L = 1.

If p|L : L → Σ is the restriction of the Hopf projection to L, then at each l ∈ L, ξl

spans the kernel of dπ|l : TlL→ Tp(l)Σ.

Definition 6.2.3. Let C be a complex cone in Cn+1 with real link L. Let α be a

p-form on L. We say that α is horizontal if ξyα = 0, where ξ is the Reeb vector

field. Denote by Λp
hL the vector bundle of horizontal p-forms on L. Denote by dh the

projection of the exterior derivative onto horizontal forms.

By definition of the Reeb vector field, we see if J is the complex structure on Cn+1

then J(Λ1
hL) ⊆ Λ1

hL. So we have a well-defined splitting Λ1
hL = Λ1,0

h L ⊕ Λ0,1
h L of

one-forms into the ±i eigenspaces of J . Define the operator ∂̄h on functions to be the

projection of dh onto horizontal (0, 1)-forms.

With these definitions, we may characterise the set of exceptional weights for the

operator (6.2.6) in terms of an eigenproblem on the link of a cone.

Proposition 6.2.2. Let N be a CS complex surface at x̂ with rate µ and cone C

inside a Calabi–Yau four-fold M . Write N̂ := N\{x̂}. Let D denote the set of λ ∈ R

for which

∂̄ + ∂̄∗ : Lpk+1,λ(ν
1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ Lpk,λ−1(Λ0,1N̂ ⊗ ν1,0
M (N̂)), (6.2.7)

is not Fredholm. Let L denote the real link of C. Then λ ∈ D if, and only if, there
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exist v ∈ C∞(ν1,0
S7 (L)) and w ∈ C∞(Λ0,1

h L⊗ ν1,0
S7 (L)) so that

∂̄hv = (λ+ 2− i∇ξ)w, (6.2.8)

∂̄∗hw =
1

2
(λ+ i∇ξ)v, (6.2.9)

where ξ is the Reeb vector field on L. Here ∇ acts on Λ0,1
h L as the Levi-Civita connec-

tion of the metric on L and on ν1,0
S7 (L) as the normal part of the Levi-Civita connection

on S7.

Proof. Similarly to the proof of Proposition 6.2.1, if ρ is a radius function for N then

we can see that

∂̄ + ∂̄∗ρ2,

on N̂ is asymptotically translation invariant to

∂̄C + ∂̄∗Cr
2,

on the cone C where this time we take a metric on νC4(C) that is independent of r.

If v ∈ C∞(νS7(L) ⊗ C) we can think of rµv as a complexified normal vector field on

C, and moreover the complex structure J on C4 induces a splitting

νS7(L)⊗ C = ν1,0
S7 (L)⊕ ν0,1

S7 (L),

of the complexified normal bundle of L in S7 into holomorphic and antiholomorphic

parts (the i and −i eigenspaces of J respectively). Also, by definition of the Reeb

vector field, if we take θ ∈ C∞(Λ1L) to be the dual one-form to ξ we have that

dr − irθ is a (0, 1)-form on C. Since Λ2C ∼= Λ2L ⊕ dr ∧ Λ1L, we can see that a

(0, 2)-form on C must be of the form

rµ(dr − irθ) ∧ w,

where w ∈ C∞(Λ0,1
h L). By the discussion in Section 4.2.3, we deduce that λ ∈ D if,

and only if, there exists v ∈ C∞(νS7(L)) and w ∈ C∞(Λ0,1
h L⊗ ν1,0

S7 (L)) so that

∂̄C(rλv) + ∂̄∗C

(
rλ+2

(
dr

r
− iθ

)
∧ w

)
= 0,
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where θ is dual to the Reeb vector field ξ. We can calculate that

dC(rλv) = λrλ−1dr ⊗ v + rλθ ⊗∇ξv + rλdhv,

and therefore

∂̄C(rλv) = rλ
1

2

(
dr

r
− iθ

)
⊗ (λ+ i∇ξ)v + rλ∂̄hv. (6.2.10)

We also have that

∂̄∗C

((
dr

r
− iθ

)
∧ rλ+2w

)
= − ∂

∂r
y∇ ∂

∂r

((
dr

r
− iθ

)
∧ rλ+2w

)
− 1

r2
ξy∇ξ

((
dr

r
− iθ

)
∧ rλ+2w

)
− rλ

(
dr

r
− iθ

)
∂̄∗hw,

where since w is a horizontal (0, 1)-form we see that any term gained from applying

∂̄∗h to r−1dr− iθ must be a multiple of w at each point and therefore will vanish under

exterior product with w. We have that

− ∂

∂r
y∇ ∂

∂r

((
dr

r
− iθ

)
∧ rλ+2w

)
= −(λ+ 1)rλw,

and

−ξy∇ξ

((
dr

r
− iθ

)
∧ rλ+2w

)
= −rλ+2w + irµ+2∇ξw,

since ∇ξdr = rθ where ∇ is the Levi-Civita connection of the cone metric. We deduce

that

∂̄∗C

((
dr

r
− iθ

)
∧ rλ+2w

)
= −rλ(λ+ 2− i∇ξ)w − rλ

(
dr

r
− iθ

)
∂̄∗hw. (6.2.11)

Equating (6.2.10) and minus (6.2.11), we find that λ ∈ D if, and only if, there exist

v ∈ C∞(ν1,0
S7 (L)) and w ∈ C∞(Λ0,1

h L⊗ ν1,0
S7 (L)) satisfying

∂̄hv = (λ+ 2− i∇ξ)w,

∂̄∗hw =
1

2
(λ+ i∇ξ)v,

as claimed.
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6.2.4 An eigenproblem on the complex link

In Proposition 6.2.2 we characterised the set of exceptional weights D for which the

operator (6.2.7) is not Fredholm in terms of an eigenproblem on the real link of a

complex cone C. In this section we will introduce a trick used by Lotay [39, §6]

to study an eigenvalue problem on the link of a coassociative cone which is a circle

bundle over a complex curve in CP 2. This will allow us to give an equivalent eigenvalue

problem to (6.2.8)-(6.2.9) on the real link of C completely in terms of operators and

vector bundles on the complex link of C.

Let C be a complex cone with real link L and complex link Σ. Suppose we have a

problem of the following form: Find all of the functions f on L that satisfy

Lξf = imf, ∂̄hf = 0, (6.2.12)

for some m ∈ Z, where ξ is the Reeb vector field on C.

We would like to understand the relationship between the operator ∂̄h on the real link

of C and ∂̄Σ on the complex link C.

Definition 6.2.4. Call a function, horizontal vector field or horizontal differential

form f on L basic if

Lξf = 0.

Basic functions, forms and vector fields are special because they are in one-one corre-

spondence with functions, forms and vector fields on Σ. It follows from [49, Lem 1]

that ∂̄h acting on basic functions, forms or vector fields on L is equivalent to ∂̄Σ acting

on functions, forms or vector fields on Σ. In Problem (6.2.12), when m 6= 0, f is not

basic. However, a simple trick allows us to pretend that f is basic.

By the definition of the complex link, we may identify the cone C with the vector

bundle OCP 3(−1)|Σ, that is, the tautological line bundle over CP 3 restricted to Σ.

This is then a trivial (real) line bundle over L and therefore has a global section given
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by the map x 7→ s(x) = x for x ∈ L. It is easy to see that Lξs = is, and therefore

f ⊗ s−m,

is a section of the vector bundle OCP 3(m)|Σ satisfying

Lξ(f ⊗ s−m) = 0,

and therefore pushes down to a well-defined section of the vector bundle OCP 3(m)|Σ.

Since OCP 3(m)|Σ is a trivial line bundle over L, we can still consider f ⊗ s−m as a

function on L. Therefore we can rephrase Problem (6.2.12) as: Find all basic sections

f̃ of OCP 3(m)|Σ → L satisfying

∂̄hf̃ = 0.

This is now equivalent to finding the sections f̃ of OCP 3(m)|Σ → Σ that satisfy

∂̄Σf̃ = 0.

Therefore we have reduced Problem (6.2.12) to asking: How many holomorphic sec-

tions of the line bundle OCP 3(m)|Σ are there?

This problem is easily solved using the Hirzebruch–Riemann–Roch Theorem [17, Thm

5.1.1].

Theorem 6.2.3 (Hirzebruch–Riemann–Roch). Let Σ be a Riemann surface and let

E be a vector bundle over Σ. Denote by h0(Σ, E) the dimension of the space of

holomorphic sections of E. Let KΣ denote the canonical bundle of Σ. Then

h0(Σ, E) = h0(Σ, E∗ ⊗KΣ) + deg(E) + rk(E)(1− g),

where deg(E) is the degree of the vector bundle E, rk(E) is the rank of the vector

bundle and g is the genus of Σ.

We will now apply the trick that we described above to rephrase the eigenvalue problem

(6.2.8)-(6.2.9) on the real link of a cone as an eigenvalue problem on the complex link

on a cone.
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Proposition 6.2.4. Let C be a complex cone in C4 with real link L and complex

link Σ. Then given λ ∈ R and m ∈ Z, pairs v ∈ C∞(ν1,0
CP 3(Σ) ⊗ OCP 3(m)|Σ) and

w ∈ C∞(Λ0,1Σ⊗ ν1,0
CP 3(Σ)⊗OCP 3(m)|Σ) so that

∂̄Σv = (λ+ 3 +m)w, (6.2.13)

∂̄∗Σw =
1

2
(λ− 1−m)v, (6.2.14)

are in a one-one correspondence with pairs ṽ ∈ C∞(ν1,0
S7 (L)) and w̃ ∈ C∞(Λ0,1

h L ⊗

ν1,0
S7 (L)) satisfying

Lξṽ = imṽ, Lξw̃ = imw̃,

where ξ is the Reeb vector field, and the eigenvalue problem (6.2.8)-(6.2.9).

Proof. We can pull back such v and w to basic sections of ν1,0
S7 (L) ⊗ OCP 3(m)|Σ and

Λ0,1
h L⊗ ν1,0

S7 (L)⊗OCP 3(m)|Σ over L respectively. As mentioned above, these sections

are in one-one correspondence with sections ṽ and w̃ of ν1,0
S7 (L) and Λ0,1

h L ⊗ ν1,0
S7 (L)

respectively satisfying

Lξṽ = imṽ, Lξw̃ = imw̃. (6.2.15)

So we see that v and w are in one-one correspondence with ṽ and w̃ satisfying (6.2.15),

and ṽ and w̃ satisfy

∂̄hṽ = (λ+ 3 +m)w̃,

∂̄∗hw̃ =
1

2
(λ− 1−m)ṽ.

Finally, by [49, Lemma 3, §5], we see that any horizontal vector field X on S7 viewed

as a circle bundle over CP 3 satisfies

horizontal part(∇Xξ) = JX.

and so for any vector field of type (1, 0), we have that

Lξv = ∇ξv −∇vξ = ∇ξv − iv.
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Therefore (6.2.15) implies that

∇ξṽ = i(m+ 1)ṽ, ∇ξw̃ = i(m+ 1)w̃,

and therefore

∂̄hṽ = (λ+ 2− i∇ξ)w̃,

∂̄∗hw̃ =
1

2
(λ+ i∇ξ)ṽ,

as required.

6.3 Cone deformations: some calculations

Let C be a two-dimensional complex cone in C4. Let v be a normal vector field on C. If

v is sufficiently small, we can apply the tubular neighbourhood theorem for cones 5.2.3

to identify v with a deformation of C. Write v = v1⊕ v2, where v1 ∈ C∞(ν1,0
C4 (C)) and

v2 ∈ C∞(ν0,1
C4 (C)). We know from Proposition 3.3.3 that v is an infinitesimal Cayley

deformation of C if, and only if,

∂̄v1 +
1

4
∂̄∗(v2yΩ

]

0) = 0,

where Ω0 is the standard holomorphic volume form on C4 and ] denotes the musical

isomorphism ν∗0,1C4 (C) → ν1,0
C4 (C). Moreover by Proposition 3.4.2 v is an infinitesimal

complex deformation of C if, and only if,

∂̄v1 = 0 = ∂̄∗(v2yΩ
]

0).

We would like to know what properties v must have in order for the deformation of C

corresponding to v to be a cone itself. By Proposition 5.2.3, in which we constructed

the tubular neighbourhood of a cone, we constructed a map

ΞC : VC → TC ,
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where VC ⊆ νR8(C) contains the zero section and TC ⊆ C4 contains C. We constructed

an action of R+ on νC4(C) satisfying |t · v| = t|v|, and the map ΞC satisfies

ΞC(tr, l, tr · v(r, l)) = tΞC(r, l, v(r, l)).

Therefore, to guarantee that ΞC ◦v is a cone in C4, we must have that v(r, l) = r · v̂(l),

for some v̂ ∈ C∞(νS7(L)). In this case,

ΞC(r, l, v(r, l)) = rΞC(1, l, v̂(l)),

for all r ∈ R+. Choosing a metric on νC4(C) that is independent of r, we see that

r · v̂(l) = rv̂(l).

Therefore the dimension of the space of infinitesimal conical Cayley deformations of

C is equal to the dimensions of the spaces of solutions to the eigenproblems (6.2.4)

and (6.2.8)-(6.2.9) with λ = 1. As remarked after the statement of Proposition 6.2.1,

this particular eigenspace can be identified with the space of infinitesimal associative

deformations of the link of the cone in S7 with its nearly parallel G2-structure. This

problem was studied by Kawai [30], who computed the dimension of these spaces for

a range of examples. In terms of the work done here, this is equivalent to solving

the eigenproblem (6.2.4) when λ = 1. In this section, we will study the eigenproblem

(6.2.8)-(6.2.9) for the three examples of complex cones that were studied by Kawai

in his paper. Our analysis will allow us to see directly the difference between the

infinitesimal conical Cayley and complex deformations of a cone, and we hope that

the complex geometry will make these calculations simpler.

Here we will describe the three complex cones in C4 whose infinitesimal Cayley and

complex deformations we will study. Alongside each example, we will quote Kawai’s

calculation of the dimension of the space of infinitesimal associative deformations of

the link in S7, which in our notation will be equal to the dimension of the space of

infinitesimal conical Cayley deformations of these cones in C4. In Section 6.3.4 we will

apply the analysis in this thesis to compute the dimension of the space of infinitesimal

conical complex deformations of these cones in C4. The links of these cones are all

homogeneous associative submanifolds of S7.
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6.3.1 Example 1: L1 = S3

The first example is the simplest, being just a vector subspace (with the zero vector

removed). We take

C1 := C2\{0}, L1 := S3, Σ1 := CP 1,

where C1 is the complex cone, L1 is the real link of C1 and Σ1 is the complex link of

C1.

Proposition 6.3.1 ([30, §6.4.1]). The space of infinitesimal associative deformations

of L1 in S7 has dimension twelve.

6.3.2 Example 2: L2
∼= SU(2)/Z2

Our second example is a little less trivial. Take

C2 := {(z1, z2, z3, z4) ∈ C4 | z4 = 0, z2
1 + z2

2 + z2
3 = 0}.

Then it can be shown [30, Ex 6.6] that the link of C2, L2, is isomorphic to the quotient

group SU(2)/Z2.

The complex link of C2 is

Σ2 := {[z0 : z1 : z2 : z3] ∈ CP 3 | z0 = 0, z2
1 + z2

2 + z2
3 = 0}.

Proposition 6.3.2 ([39, Cor 5.12], [30, Prop 6.26]). The space of infinitesimal asso-

ciative deformations of L2 in S7 has dimension twenty-two.

6.3.3 Example 3: L3
∼= SU(2)/Z3

Our third example is the most complicated to state, but is certainly the most inter-

esting.
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Define the cone C3 to be the cone over the submanifold L3 of S7 which is defined as

follows: consider the following action of SU(2) on C4
z1

z2

z3

z4

 7→


a3z1 +
√

3a2bz2 +
√

3ab2z3 + b3z4

−
√

3a2b̄z1 + a(|a|2 − 2|b|2)z2 + b(2|a|2 − |b|2)z3 +
√

3āb2z4

√
3ab̄2z1 − b̄(2|a|2 − |b|2)z2 + ā(|a|2 − 2|b|2)z3 +

√
3ā2bz4

−b̄3z1 +
√

3āb̄2z2 −
√

3ā2b̄z3 + ā3z4

 ,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. We define L3 to be the orbit of the above action

around the point (1, 0, 0, 0)T , that is,

L3 :=


a3

−
√

3a2b̄
√

3ab̄2

−b̄3

 ,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. We see that for

Z3 :=


 ζ 0

0 ζ̄

 ∈ SU(2) | ζ3 = 1

 ,

L3 is invariant under the action of Z3, therefore L3
∼= SU(2)/Z3. The complex link of

the cone C3 over L3 is

Σ3 := {[x3 :
√

3x2y :
√

3xy2 : y3] ∈ CP 3 | [x : y] ∈ CP 1},

which is known as the twisted cubic in CP 3.

This is a particularly interesting example for the following reason [38, Ex 5.8]. Define

L3(θ) to be the orbit of the above group action around the point (cos θ, 0, 0, sin θ)T .

Then L3(θ) is associative for θ ∈ [0, π
4
]. As noted above, L3(0) = L3 is the real link

of a complex cone, however, L3(π
4
) is the link of a special Lagrangian cone. Therefore

there exists a family of Cayley cones in C4, including both a complex cone and a

special Lagrangian cone, that are related by a group action.

Proposition 6.3.3 ([30, §6.3.2]). The space of infinitesimal associative deformations

of L3(π
4
) in S7 has dimension thirty.
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6.3.4 Calculations

We will now study the eigenvalue problem (6.2.8)-(6.2.9) with λ = 1 for C1, C2 and

C3 defined above. Recall that by Proposition 6.2.4 we can study the eigenproblem

(6.2.13)-(6.2.14) with λ = 1 on the complex link instead to make our calculations

easier. We first explain how to count infinitesimal conical complex deformations and

infinitesimal conical Cayley but non complex deformations of a complex cone.

Proposition 6.3.4. Let C be a complex cone in C4 with real link L and complex

link Σ. Infinitesimal complex conical deformations of C in C4 are given by holomor-

phic sections of ν1,0
CP 3(Σ). Infinitesimal Cayley conical deformations of C that are not

complex are given by v ∈ C∞(ν1,0
CP 3(Σ)⊗OCP 3(m)|Σ) satisfying

∆∂̄Σ
v = −1

2
m(4 +m)v, (6.3.1)

where −4 < m < 0.

Proof. We know that infinitesimal complex deformations C will lie in the kernel of ∂̄C

or ∂̄∗C . Recall that Corollary 3.4.5 says that these spaces are isomorphic and so we

expect them to have the same dimension. Examining the proof of Proposition 6.2.2

and comparing to Proposition 6.2.4, we see that infinitesimal complex deformations of

C are given by holomorphic sections of ν1,0
CP 3(Σ)⊗OCP 3(λ−1)|Σ, and antiholomorphic

sections of Λ0,1Σ⊗ν1,0
CP 3(Σ)⊗OCP 3(−3−λ). Since infinitesimal conical deformations of

C will correspond to λ = 1 here, we see that infinitesimal complex conical deformations

of C correspond to holomorphic sections of

ν1,0
CP 3(Σ),

and antiholomorphic sections of

Λ0,1Σ⊗ ν1,0
CP 3(Σ)⊗OCP 3(−4)|Σ ∼= ν∗1,0CP 3(Σ),

by the adjunction formula [17, Prop 2.2.17] since KCP 3|Σ = OCP 3(−4)|Σ. So we see

that infinitesimal conical complex deformations of C arise from holomorphic sections
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of the holomorphic normal bundle of the complex link in CP 3. The dimension of

the space of infinitesimal conical complex deformations of C is then equal to the real

dimension (or twice the complex dimension) of the space of holomorphic sections of

the holomorphic normal bundle of the complex link.

Finally, we see that any remaining infinitesimal conical Cayley deformations of C must

satisfy the eigenproblem (6.2.13)-(6.2.14) with λ = 1 and m 6= 0,−4. Applying ∂̄∗Σ

to (6.2.13) and using (6.2.14), we see that the remaining infinitesimal conical Cayley

deformations of C are given by v ∈ C∞(ν1,0
CP 3(Σ)⊗OCP 3(m)|Σ) satisfying

∆∂̄Σ
v = −1

2
m(4 +m)v.

While we can apply the Hirzebruch–Riemann–Roch theorem 6.2.3 to count holomor-

phic sections of holomorphic vector bundles, solving eigenproblems for the Laplacian

acting sections of vector bundles such as (6.3.1) is somewhat more difficult, especially

since the degree of the line bundle we consider appears in the eigenvalue itself. Such

problems have been studied, however, and we will make use of the following result of

López Almorox and Tejero Prieto on eigenvalues of the ∂̄Σ-Laplacian acting on sec-

tions of holomorphic line bundles over CP 1 equipped with a metric of constant scalar

curvature.

Theorem 6.3.5 ([2, Thm 5.1]). Let K be a Hermitian line bundle over Σ, where Σ

is CP 1 with metric of constant scalar curvature κ equipped with a unitary harmonic

connection ∇K of curvature F∇K = −iBωΣ for some B ∈ R. Then the spectrum of

the operator

2∂̄∗Σ∂̄Σ : C∞(K)→ C∞(K),

is the set {
λq =

κ

2

[
(q + a)2 + (q + a)|deg K + 1|

]
| q ∈ N ∪ {0}

}
,

where a = 0 if deg K ≥ 0, a = 1 otherwise.
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The space of eigensections of 2∂̄∗Σ∂̄Σ with eigenvalue λq is identified with the space of

holomorphic sections of

K−qΣ ⊗K,

when deg K ≥ 0, or of holomorphic sections of

K−qΣ ⊗K
−1,

when deg K < 0. Therefore the multiplicity of λq is

m(λq) = 1 + |deg K|+ 2q.

Example 1: L1 = S3

To calculate the dimension of the space of infinitesimal conical Cayley deformations

of the cone C1 = C2, which as real link L1 = S3 and complex link Σ1 = CP 1, we will

apply Proposition 6.3.4. We first calculate the dimension of the space of holomorphic

sections of

ν1,0
CP 3(Σ1) = OCP 3(1)|Σ ⊕OCP 3(1)|Σ,

which by the Hirzebruch–Riemann–Roch theorem 6.2.3 has dimension four. Therefore,

the dimension of the space of infinitesimal conical complex deformations of C1 is eight.

Now we study the eigenproblem

∆∂̄Σ
v = −1

2
m(4 +m), (6.3.2)

for v ∈ C∞(ν1,0
CP 3(Σ1) ⊗ OCP 3(m)|Σ) = C∞(OCP 3(m + 1)|Σ ⊕ OCP 3(m + 1)|Σ) and

−4 < m < 0. We can apply Theorem 6.3.5 to solve (6.3.2) as long as the connection

on OCP 3(m+ 1)|Σ ⊕OCP 3(m+ 1)|Σ takes the form∇1 0

0 ∇2

 ,

where ∇i are connections on OCP 3(m + 1)|Σ. This is the case here, as can be seen

from the relation between the connection on the normal bundle of Σ1 in CP 3 and the
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connection on the normal bundle of L1 in S7 (see [49, Lem 1]) and the fact that the

normal bundle of L1 in S7 is trivial.

Therefore, by Theorem 6.3.5, solving (6.3.2) reduces to solving the algebraic equation

−m(4 +m) = 4((q + a)2 + (q + a)|m+ 2|),

for m ∈ Z and q ∈ N∪{0} (since the scalar curvature of Σ1 is eight) with a = 0 if m ≥

−1 and a = 1 if m ≤ −2. It can be checked that this has solution (q, a,m) = (0, 1,−2),

and so by Theorem 6.3.5 the dimension of eigensections of (6.3.2) has dimension

2× 2 = 4. So we have a total of twelve infinitesimal conical Cayley deformations of C

in C4.

We sum this up in a proposition.

Proposition 6.3.6. The real dimension of the space of infinitesimal conical Cayley

deformations of C1 in C4 is twelve. The real dimension of the space of infinitesimal

conical complex deformations of C1 in C4 is eight.

Remark. Recall that the stabiliser of a Cayley plane in R8 is isomorphic to (SU(2)×

SU(2)×SU(2))/Z2 and that the dimension of Spin(7)/((SU(2)×SU(2)×SU(2))/Z2)

is twelve. The stabiliser of a two-dimensional complex plane in C4 is isomorphic to

U(2)× U(2), and the dimension of U(4)/(U(2)× U(2)) is equal to eight.

Example 2: L2
∼= SU(2)/Z2

We now calculate the dimension of the space of infinitesimal conical Cayley deforma-

tions of the cone C2 in C4 with link L2
∼= SU(2)/Z2 and complex link Σ2 as defined

in Section 6.3.2. Again by Proposition 6.3.4 we compute the dimension of the space

of holomorphic sections of

ν1,0
CP 3(Σ2) = OCP 3(1)|Σ ⊕OCP 3(2)|Σ,

which by the Hirzebruch–Riemann–Roch theorem 6.2.3 has dimension eight, and so

we deduce that the space of infinitesimal conical complex deformations of C2 has

dimension sixteen.
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Again since the normal bundle of L2 in S7 is trivial we may apply Theorem 6.3.5 to

solve the eigenproblem

∆∂̄Σ
v = −1

2
m(m+ 4), (6.3.3)

for v ∈ C∞(OCP 3(m + 1)|Σ ⊕ OCP 3(m + 2)|Σ) with −4 < m < 0. This reduces again

to solving the equations for m ∈ Z and q ∈ N ∪ {0}

−m(m+ 4) = 2((q + a)2 + (q + a)|2m+ 3|),

with a = 0 for m ≥ −1 and a = 1 otherwise, which has solution (q, a,m) = (0, 1,−2)

and

−m(m+ 4) = 2((q + a)2 + (q + a)|2m+ 5|),

with a = 0 for m ≥ −2 and a = 1 otherwise, which has solution (q, a,m) = (1, 0,−2).

Therefore by Theorem 6.3.5 the dimension of the space of solutions to (6.3.3) has

dimension 3 + 3 = 6. Therefore, the dimension of the space of infinitesimal conical

Cayley deformations of C2 in C4 is twenty-two.

Proposition 6.3.7. The real dimension of the space of infinitesimal conical Cayley

deformations of C2 in C4 is twenty-two. The real dimension of the space of infinitesi-

mal conical complex deformations of C2 in C4 is sixteen.

Remark. The dimension of Spin(7)/SU(4) is six, which implies that the six Cayley

but not complex infinitesimal conical deformations of C2 are just rigid motions induced

by the action of Spin(7) on R8.

Example 3: L3
∼= SU(2)/Z3

Finally, we compute the dimension of the space of infinitesimal conical Cayley de-

formations of C3 in C4, which has real link L3
∼= SU(2)/Z3 and complex link Σ3 as

defined in Section 6.3.3.

The dimension of the space of holomorphic sections of

ν1,0
CP 3(Σ3) = OΣ3(5)⊕OΣ3(5),
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where OΣ3(n) denotes the line bundle of degree n over Σ3. By the Hirzebruch–

Riemann–Roch theorem 6.2.3, this space has dimension twelve, and so the dimension

of the space of infinitesimal conical complex deformations of C3 in C4 has dimension

twenty-four.

So it remains to find v ∈ C∞(OΣ3(3m+ 5)⊕OΣ3(3m+ 5)) satisfying

∆∂̄Σ
v = −1

2
m(4 +m). (6.3.4)

Unfortunately, for this example we cannot directly apply Theorem 6.3.5 to this prob-

lem, so we must find a different way to solve (6.3.4). We will do this by constructing

a moving frame for L3.

Proposition 6.3.8 ([30, §6.3.2]). There exists an orthonormal frame of L3, denoted

{e1, e2, e3}, where Je2 = e3 and e1 is the Reeb vector field. We have that

[e1, e2] = −2

3
e3, [e1, e3] =

2

3
e2, [e2, e3] = −2e1.

We extend this to a frame of S7 as follows.

Lemma 6.3.9. There exist orthonormal frames {e1, e2, e3} of L3 and {f4, f5, f6, f7}

of νS7(L3) such that the structure equations of Proposition A.0.2 take the following

form:

dx = e1ω1 + e2ω2 + e3ω3 + f4η4 + f5η5 + f6η6 + f7η7,

de1 = −ω1x− ω3e2 + ω2e3 − η5f4 + η4f5 − η7f6 + η6f7,

de2 = −ω2x+ ω3e1 +
ω1

3
e3 +

2√
3
ω2f4 +

2√
3
ω3f5,

de3 = −ω3x− ω2e1 −
ω1

3
e2 −

2√
3
ω3f4 +

2√
3
ω2f5,

df4 = −xη4 + η5e1 −
2√
3
ω2e2 +

2√
3
ω3e3 −

ω1

3
f5 + ω2f6 + ω3f7,

df5 = −xη5 − η4e1 −
2√
3
ω3e2 −

2√
3
ω2e3 +

ω1

3
f4 − ω3f6 + ω2f7,

df6 = −xη6 + η7e1 − ω2f4 + ω3f5 − ω1f7,

df7 = −xη7 − η6e1 − ω3f4 − ω2f5 + ω1f6,
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where Je2 = e3, Jf4 = f5, Jf6 = f7, {ω1, ω2, ω3} is an orthonormal coframe of L3

(ωi(ej) = δij) and {η4, η5, η6, η7} is an orthonormal coframe of the normal bundle of

L2 in S7 (ηa(fb) − δab). Further, the second structure equations of Proposition A.0.3

are also satisfied.

Proof. Let ∇ denote the Levi-Civita connection of L3. Again we take α2 = ω2 and

α3 = ω3 as we may by Proposition A.0.4. We see that since, using the structure

equations given in A.0.2,

−α1(e1)e3 − e3 = ∇e1e2 −∇e2e1 = [e1, e2] = −2

3
e3,

we must have that α1 = −ω1

3
. We check that

−1

3
e2 + e2 = ∇e1e3 −∇e3e1 = [e1, e3] =

2

3
e2,

and

−e1 − e1 = ∇e2e3 −∇e3e2 = [e2, e3] = −2e1.

Now Equation (A.0.3) tells us that we must have that

−2(β4
2 ∧ β5

2 + β6
2 ∧ β7

2) = −8

3
ω2 ∧ ω3.

So we take β4
2 = 2√

3
ω2 and β5

2 = 2√
3
ω3, β6

2 = β7
2 = 0 and this is satisfied. To ensure

that Equation (A.0.4) is satisfied, we seek γ so that

dβ4
2 =

2√
3
dω2 = − 4

3
√

3
ω1 ∧ ω3 = − 2√

3
ω1 ∧ ω3 +

1√
3
γ1 ∧ ω3,

dβ5
2 =

2√
3
dω3 =

4

3
√

3
ω1 ∧ ω2 =

2√
3
ω1 ∧ ω2 −

1√
3
γ1 ∧ ω2,

dβ6
2 = 0 =

1√
3
γ3 ∧ ω3 −

1√
3
γ2 ∧ ω2,

dβ7
2 = 0 = − 1√

3
γ3 ∧ ω2 −

1√
3
γ2 ∧ ω2.

From this we see that we must have that γ1 = 2
3
ω1, and γ2 = aω2 and γ3 = aω3. To

determine a, we check Equation (A.0.5), which tells us that we must have

−1

3
dω1 = −2

3
ω2 ∧ ω3 =

a2

2
ω2 ∧ ω3 −

8

3
ω2 ∧ ω3,
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and therefore we must have a = 2. It can be checked that the remaining parts of Equa-

tion (A.0.5) are satisfied with γ = (2
3
ω1, 2ω2, 2ω3). Therefore we choose {f4, f5, f6, f7}

so that the above choices of γ, β and α hold, and so the equations claimed hold.

We have that {f4 − if5, f6 − if7} is a frame for the holomorphic tangent bundle of L3

in S7. We have that

∇e1(f4 − if5) = −1

3
f5 −

i

3
f4 = − i

3
(f4 − if5),

∇e1(f6 − if7) = −f7 − if6 = −i(f6 − if7).

However,

(∇⊥e2 + i∇⊥e3)(f4 − if5) = 0,

(∇⊥e2 + i∇⊥e3)(f6 − if7) = −2(f4 − if5),

(∇⊥e2 − i∇
⊥
e3

)(f4 − if5) = 2(f6 − if7),

(∇⊥e2 − i∇
⊥
e3

)(f6 − if7) = 0,

and so we see explicitly that the connection on the normal bundle of L3 in S7 is not

in a nice diagonal form as we had before. Since we have a moving frame of S7, we

will return to considering the eigenvalue problem (6.2.8)-(6.2.8). Writing a section of

ν1,0
S7 (L3) as

g1(f4 − if5) + g2(f6 − if7),

where g1, g2 are functions on L3 and sections of Λ0,1
h L⊗ ν1,0

S7 (L3) as

α1 ⊗ (f4 − if5) + α2 ⊗ (f6 − if7),

where α1, α2 are sections of Λ0,1
h L, we seek g1, g2 ∈ C∞(L3) and α1, α2 ∈ C∞(Λ0,1

h L)

satisfying

∂̄hg1 − g2(ω2 − iω3) =

(
8

3
− i∇e1

)
α1,

∂̄∗hα1 =
1

2

(
4

3
+ i∇e1

)
g1,
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and

∂̄hg2 = (2− i∇e1)α2,

∂̄∗hα2 + 2(e2yα1) =
1

2
(2 + i∇e1)g2.

We must have that

g2(ω2 − iω3) = aα1,

for some a ∈ C (since if α1 = 0 then we find infinitesimal conical complex deformations

of C3), and so we may instead study the eigenvalue problems

∂̄hg1 =

(
8

3
− i∇e1 + a

)
α1, (6.3.5)

∂̄∗hα1 =
1

2

(
4

3
+ i∇e1

)
g1, (6.3.6)

and

∂̄hg2 = (2− i∇e1)α2, (6.3.7)

∂̄∗hα2 =
1

2

(
2 +

4

a
+ i∇e1

)
g2. (6.3.8)

Using the structure equations given in Lemma 6.3.9, we see that the problem (6.3.7)-

(6.3.8) is equivalent to the eigenproblem

∂̄h(g2(ω2 − iω3)) =

(
8

3
− i∇e1

)
α2 ⊗ (ω2 − iω3), (6.3.9)

∂̄∗h(α2 ⊗ (ω2 − iω3)) =
1

2

(
4

3
+

4

a
+ i∇e1

)
g2(ω2 − iω3), (6.3.10)

where we consider g2(ω2 − iω3) as a Λ0,1
h L-valued function, which becomes

a∂̄hα1 =

(
8

3
− i∇e1

)
α2, (6.3.11)

∂̄∗hα2 =
a

2

(
4

3
+

4

a
+ i∇e1

)
α1, (6.3.12)

where now α2 is a section of Λ0,1
h L⊗ Λ0,1

h L. Supposing that

Le1g1 = img1, Le1α1 = imα1,
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for 3m ∈ Z we see that in order for the eigenproblem (6.3.11)-(6.3.12) to make sense

we must have

Le1α2 = imα2.

Write OΣ3(d) for the degree d line bundle over Σ3. Then as explained in Section 6.2.4,

we may replace the eigenvalue problems (6.3.5)-(6.3.6)-(6.3.11)-(6.3.12) with seeking

g1 ∈ C∞(OΣ3(3m)), and α1 ∈ C∞(OΣ3(3m+ 2)), α2 ∈ C∞(OΣ(3m+ 4)) satisfying

∂̄Σ3g1 =

(
8

3
+ a+m

)
α1, (6.3.13)

∂̄∗Σ3
α1 =

1

2

(
4

3
−m

)
g1, (6.3.14)

and

a∂̄Σ3α1 =

(
8

3
+m

)
α2, (6.3.15)

∂̄∗Σ3
α2 =

a

2

(
4

3
+

4

a
−m

)
α1. (6.3.16)

We find that α1 must simultaneously satisfy the following two eigenproblems: applying

∂̄Σ3 to (6.3.14) and using (6.3.13) we find that

∂̄Σ3 ∂̄
∗
Σ3
α1 =

1

2

(
8

3
+ a+m

)(
4

3
−m

)
α1, (6.3.17)

and applying ∂̄∗Σ3
to (6.3.15) and using (6.3.16) we have that

∂̄∗Σ3
∂̄Σ3α1 =

1

2

(
8

3
+m

)(
4

3
+

4

a
−m

)
α1. (6.3.18)

Applying the formula [2, Lem 2.1, 2.2]

∂̄Σ3 ∂̄
∗
Σ3
α = ∂̄∗Σ3

∂̄Σ3α +
2

3
(3m+ 2)α,

where α is a section of OΣ3(3m+ 2), we see that

∂̄∗Σ3
∂̄Σ3α1 =

1

2

(
8

3
+m

)(
4

3
+

4

a
−m

)
α1,

=
1

2

[(
8

3
+ a+m

)(
4

3
−m

)
+

4

3
(3m+ 2)

]
α1,
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for α1 ∈ C∞(OΣ3(3m+ 2)). Therefore a ∈ C must satisfy(
8

3
+m

)(
4

3
+

4

a
−m

)
=

(
8

3
+ a+m

)(
4

3
−m

)
− 4

3
(3m+ 2).

Solving this equation for a, we find that for m 6= 4/3

a± =
4m+ 8

3
± 8

2(4
3
−m)

,

which simplifies to

a+ =
6m+ 16

4− 3m
, a− = −2.

First considering a = a+ we apply Theorem 6.3.5 to see that

1

2

(
8

3
+m

)(
4

3
−m+

4(4− 3m)

6m+ 16

)
,

is an eigenvalue of ∂̄∗Σ3
∂̄Σ3 acting on sections of OΣ3(3m+2) if, and only if, m = −2/3.

In this case there are five α1 ∈ C∞(OΣ3(0)) satisfying

∆∂̄Σ3
α1 = 4α1.

Taking g1 = ∂̄∗Σ3
α1 and α2 = ∂̄Σ2α1 completes this solution to the eigenproblem

(6.3.13)-(6.3.14)-(6.3.15)-(6.3.16).

Secondly, when a = a− = −2 Theorem 6.3.5 tells us that

1

2

(
8

3
+m

)(
−2

3
−m

)
,

is an eigenvalue of ∂̄∗Σ3
∂̄Σ3 acting on sections of OΣ3(3m+2) if, and only if, m = −2/3,

in which case we seek functions α1 on Σ3 satisfying

∆∂̄Σ3
α1 = 0.

Since Σ3 is compact, α1 must be holomorphic and further constant. Taking g1 = α2 = 0

completes our analysis.

Finally, we check the case that m = 4/3. In this case, for the eigenvalues

1

2

(
8

3
+

4

3

)(
4

a

)
= −4

6
(4 + 2),
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we must have a = −2. However, in this case, the eigenvalue is equal to −4, which is

negative and therefore not a possible eigenvalue of ∂̄∗Σ3
∂̄Σ3 on sections of OΣ3(6).

We have found a total of six infinitesimal conical Cayley deformations of C3 that are

not complex.

Proposition 6.3.10. The real dimension of the space of infinitesimal conical Cayley

deformations of C3 in C4 is thirty. The real dimension of the space of infinitesimal

conical complex deformations of C3 in C4 is twenty-four.

Remark. Similarly to Proposition 6.3.7 we have six infinitesimal conical Cayley de-

formations of C3 which are not complex, which again implies that these deformations

are just rigid motions.

6.4 Dimension of the moduli space of complex de-

formations of a CS complex surface

Now that we have discussed in more detail the set of exceptional weights D for the

operator (6.2.6), we will apply the Atiyah–Patodi–Singer index theorem 4.4.1 to the

operator ∂̄ + ∂̄∗ to compare the dimension of the space of CS complex deformations

of a CS complex surface in a Calabi–Yau four-fold to what we might expect to be

the dimension of the space of all complex deformations of the complex surface from

Kodaira’s theorem 3.1.1.

Theorem 6.4.1. Let N be a CS complex surface at x̂ with cone C and rate µ inside

a Calabi-Yau four-fold M . Write N̂ := N\{x̂}. Let, for k > 4/p+ 1,

∂̄ + ∂̄∗ : Lpk+1,µ(ν1,0
M (N̂)⊕ Λ0,2N̂ ⊗ ν1,0

M (N̂))→ Lpk,µ−1(Λ0,1N̂ ⊗ ν1,0
M (N̂)), (6.4.1)

and denote the index of this operator by

indµ(∂̄ + ∂̄∗).
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Then

χ(N, ν1,0
M (N)) = indµ(∂̄ + ∂̄∗) +

∑
λ∈(0,µ)∩D

d(λ) +
d(0) + η(0)

2
, (6.4.2)

where χ(N, ν1,0
M (N)) is the holomorphic Euler characteristic of ν1,0

M (N), D is the set

of λ ∈ R for which (6.2.13)-(6.2.14) has a nontrivial solution and then d(λ) is the

dimension of the solution space, η is the η-invariant which we can now define to be

η(s) :=
∑

06=λ∈D

d(λ)
sign(λ)

|λ|s
. (6.4.3)

Remark. We interpret this as follows. The term χ(N, ν1,0
M (N)) is interpreted as the

dimension of the space of all complex deformations of N in M , since this is what we

can expect if Kodaira’s theorem 3.1.1 remains valid for complex varieties. Theorem

5.4.4 tells us that indµ(∂̄ + ∂̄∗) is the expected dimension of the space of CS Cayley

deformations of N in M (which by Proposition 5.5.3 we can interpret as the expected

dimension of the space of CS complex deformations of N in M , although Theorem

5.5.2 tells us that in fact this should be equal to just the dimension of the kernel

of (6.4.1), which is what we expect to happen generically anyway). The term d(1)

represents deformations of N that have a different tangent cone to N at x̂.

Proof. This follows from Proposition 4.4.5, since in this case∫
N

α0(x) vol = χ(N, ν1,0
M (N)),

from [50, Thm 1.6].

6.4.1 Calculating the η-invariant for an example

The final calculation in this chapter is to compute the η-invariant for one of the

examples we considered in Section 6.3. This will help us to calculate (what we expect

to be) the codimension of the space of conically singular complex CS deformations

of a CS complex surface N at C with rate µ in a Calabi–Yau manifold M inside the
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space of all complex deformations of N , for a certain cone C in C4, using Theorem

6.4.1.

We consider our simplest example of a two-dimensional complex cone in C4 which

is C1 = C2. Denote by Σ1 the complex link of C1, i.e., Σ1 = CP 1. Proposition

6.2.4 told us that the exceptional weights λ ∈ R satisfy an eigenproblem, and to

calculate the η-invariant we must first find the dimension of the space of solutions

to (6.2.13)-(6.2.14) for each λ ∈ R. Setting w = 0 in (6.2.13)-(6.2.14), we seek

holomorphic sections of ν1,0
CP 3(Σ1) ⊗ OCP 3(λ − 1)|Σ1 = OCP 3(λ)|Σ1 ⊕ OCP 3(λ)|Σ1 , for

λ ∈ N ∪ {0}, which by the Hirzebruch–Riemann–Roch theorem 6.2.3 has dimension

2(λ+1). Similarly, setting v = 0 in (6.2.13)-(6.2.14), we seek antiholomorphic sections

of OCP 3(−λ)|Σ1 ⊕OCP 3(−λ)|Σ1 , which again have dimension 2(λ+ 1).

It remains to compute the multiplicity of λ as an eigenvalue of

2∂̄∗Σ1
∂̄Σ1v = (λ− 1−m)(λ+ 3 +m)v, (6.4.4)

where v is a section of OCP 3(m + 1)|Σ1 ⊕OCP 3(m + 1)|Σ1 and λ 6= 1 + m or −3−m.

Theorem 6.3.5 tells us that this is equivalent to solving the algebraic equation

(λ− 1−m)(λ+ 3 +m) = 4[q2 + q|m+ 2|],

where q is a positive integer.

It can be computed that the multiplicity of integer λ > 0 as an eigenvalue of (6.4.4)

is 2λ(λ + 1) and the multiplicity of integer λ < −2 as an eigenvalue of (6.4.4) is

2(λ+ 2)(λ+ 1). So we have that

η(s) = 4
∞∑
λ=1

λ+ 1

λs
+ 2

∞∑
λ=1

λ(λ+ 1)

λs
− 2

∞∑
λ=3

(−λ+ 2)(−λ+ 1)

λs
,

= 12
∞∑
λ=1

λ1−s,

and so

η(0) = 12ζ(−1) = −1,
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where ζ is the Riemann zeta function.

We have that the multiplicity of the zero eigenvalue in this case in four. So we have

found that
η(0) + h

2
=

3

2
.

6.5 Concluding remarks

In Chapters 3–6 of this thesis we have considered the deformation theory of Cay-

ley submanifolds, paying particular attention to the special case that the ambient

manifold is a four-dimensional Calabi–Yau manifold and the Cayley submanifold is a

two-dimensional complex submanifold. We saw in Chapter 3 that Cayley and com-

plex deformations of a compact complex surface are the same, and in Chapter 5 we

saw that conically singular Cayley and complex deformations of a conically singular

complex surface were the same. We saw in Chapter 6 by considering complex cones

in C4 that this is not the case in general. For example, we saw that we can deform a

complex plane into a Cayley plane that is no longer complex.

There is still potential for further work on the deformation theory of conically singular

Cayley submanifolds. In particular, it would be interesting to find an analytic justifi-

cation for the heuristic explanation of the terms that appear in the index formula given

by an application of the Atiyah–Patodi–Singer theorem in Theorem 6.4.1. This could

be done by applying similar techniques to Joyce [22] and Lotay [37], who considered

deformations of conically singular special Lagrangian and coassociative submanifolds

respectively. It would, however, be interesting to see if new techniques could be de-

veloped to study more exotic deformations of conically singular Cayley submanifolds.

It would be interesting to try to exploit the relationship between Cayley and com-

plex submanifolds explored in this thesis to find new techniques for problems such as

desingularising Cayley submanifolds. Desingularising complex varieties is relatively

simple using techniques from algebraic geometry and so it might be the case that the
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close relationship between Cayley and complex submanifolds could mean that such

techniques could be applied to Cayley submanifolds.
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Appendix A

Structure equations of Spin(7)

We will here give the structure equations of S7 adapted to an associative submanifold

of S7. To do this, we will consider the sphere S7 as the group quotient Spin(7)/G2,

that is, we can consider Spin(7) as the G2 frame bundle over S7. Bryant [7, Prop 1.1]

first wrote down the structure equations of Spin(7), but we will quote them in the

following useful form given by Lotay [38, §4].

Proposition A.0.1 ([38, Prop 4.2]). We may write the Lie algebra spin(7) of the Lie

group Spin(7) ⊆ Gl(n,R) as

spin(7) =




0 −ωT −ηT

ω [α] −βT − 1
3
{η}T

η β + 1
3
{η} 1

2
[α− ω]+ + 1

2
[γ]−


∣∣∣∣∣∣∣∣∣
ω, α, γ ∈M3×1(R),

η ∈M4×1(R),

β ∈M4×3(R),

β4
1 + β7

2 + β6
3 = 0,

β6
1 − β5

2 − β4
3 = 0,

β5
1 + β6

2 − β7
3 = 0,

β7
1 − β4

2 + β5
3 = 0.

 ,

where

[(x, y, z)T ] :=


0 z −y

−z 0 x

y −x 0

 ,

181
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[(x, y, z)T ]± :=


0 −x −y ±z

x 0 z ±y

y −z 0 ∓x

∓z ∓y ±x 0

 ,

and

{(p, q, r, s)T} :=


−q −r s

p s r

−s p −q

r −q −p

 .

Now that we have the structure equations for Spin(7), we may construct a moving

frame for S7 adapted to an associative three-fold. If we let g : Spin(7) → Gl(8,R)

be the map taking Spin(7) to the identity component of the Lie subgroup of Gl(8,R)

which has Lie algebra spin(7), then we can write g = (x e f), where for p ∈ Spin(7)

we have that x(p) ∈ M8×1(R), e(p) = (e1(p), e2(p), e3(p)) ∈ M8×3(R) and f(p) =

(f4(p), f5(p), f6(p), f7(p)) ∈ M8×4(R). We can choose our frame so that x represents

a point of our associative three-fold L, e is an orthonormal frame for L and ω is

an orthonormal coframe for L. Therefore f is an orthonormal frame for the normal

bundle of L in S7, η an orthonormal coframe. Then since the Maurer-Cartan form

φ = g−1dg takes values in spin(7), we can write

φ :=


0 −ωT −ηT

ω [α] −βT − 1
3
{η}T

η β + 1
3
{η} 1

2
[α− ω]+ + 1

2
[γ]−

 .

This yields the following results

Proposition A.0.2 ([38, Prop 4.3]). Use the notation above. On the adapted frame

bundle of an associative three-fold L in S7, x : L→ S7 and {e1, e2, e3, f4, f5, f6, f7} is
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a local oriented orthonormal basis for TA⊕NA, so the first structure equations are

dx = eω;

de = −xωT + e[α] + fβ;

df = −eβT +
1

2
f([α− ω]+ + [γ]−).

Proposition A.0.3 ([38, Prop 4.4]). Use the notation above. On the adapted frame

bundle of an associative three-fold in S7, there exists a local tensor of functions h =

hajk = hakj, for 1 ≤ j, k ≤ 3 and 4 ≤ a ≤ 7, such that the second structure equations

are

dω = −[α] ∧ ω; (A.0.1)

β = hω; (A.0.2)

d[α] = −[α] ∧ [α] + ω ∧ ωT + βT ∧ β; (A.0.3)

dβ = −β ∧ [α]− 1

2
([α− ω]+ + [γ]−) ∧ β; (A.0.4)

1

2
d([α− ω]+ + [γ]−) = −1

4
[α− ω]+ ∧ [α− ω]+ −

1

4
[γ]− ∧ [γ]− + β ∧ βT . (A.0.5)

Notice that [α] is the Levi-Civita connection of L and 1
2
([α − ω]+ + [γ]−) defines the

induced connection on the normal bundle of L in S7. We have that h defines the

second fundamental form IIL ∈ C∞(S2T ∗L; ν(L)) of L in S7, writing

IIL := hajkfa ⊗ ωjωk.

Since the associative submanifolds of S7 that we are considering are S1-bundles over

complex curves, we may reduce the structure equations of L.

Proposition A.0.4 ([38, Ex 4.9]). Let L be the link of complex cone C in C4. Then

we can choose a frame of TS7|L such that

α2 = ω2, α3 = ω3 and β4
1 = β5

3 = β6
3 = β7

3 = 0.

This implies that β4
3 = −β5

2 , β
5
3 = β4

2 , β
6
3 = −β7

2 and β7
3 = β6

2 . Here e1 defines the

direction of the circle fibres of L over the complex link Σ of C.
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Proof. This follows from supposing that the complex structure of C4 acts on C as

follows:

Jx = e1; Je2 = e3; Jf4 = f5; Jf6 = f7.
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[31] K. Kodaira. A theorem of completeness of characteristic systems for analytic fam-

ilies of compact submanifolds of complex manifolds. Ann. of Math. (2), 75:146–

162, 1962.



188 BIBLIOGRAPHY

[32] S. Lang. Real analysis. Addison-Wesley Publishing Company, Advanced Book

Program, Reading, MA, second edition, 1983.

[33] S. Lang. Introduction to differentiable manifolds. Universitext. Springer-Verlag,

New York, second edition, 2002.

[34] R. B. Lockhart. Fredholm, Hodge and Liouville theorems on noncompact mani-

folds. Trans. Amer. Math. Soc., 301(1):1–35, 1987.

[35] R. B. Lockhart and R. C. McOwen. Elliptic differential operators on noncompact

manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12(3):409–447, 1985.

[36] J. D. Lotay. 2-ruled calibrated 4-folds in R7 and R8. J. London Math. Soc. (2),

74(1):219–243, 2006.

[37] J. D. Lotay. Coassociative 4-folds with conical singularities. Comm. Anal. Geom.,

15(5):891–946, 2007.

[38] J. D. Lotay. Associative submanifolds of the 7-sphere. Proc. Lond. Math. Soc.

(3), 105(6):1183–1214, 2012.

[39] J. D. Lotay. Stability of coassociative conical singularities. Comm. Anal. Geom.,

20(4):803–867, 2012.

[40] J. D. Lotay and A. Neves. Uniqueness of Langrangian self-expanders. Geom.

Topol., 17(5):2689–2729, 2013.

[41] K. Mashimo. Homogeneous totally real submanifolds of S6. Tsukuba J. Math.,

9(1):185–202, 1985.
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